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A typical linear open system is often defined as a component of a larger conservative
one. For instance, a dielectric medium, defined by its frequency dependent electric
permittivity and magnetic permeability is a part of a conservative system which includes
the matter with all its atomic complexity. A finite slab of a lattice array of coupled
oscillators modelling a solid is another example. Assuming that such an open system
is all one wants to observe, we ask how big a part of the original conservative system
(possibly very complex) is relevant to the observations, or, in other words, how big a
part of it is coupled to the open system? We study here the structure of the system
coupling and its coupled and decoupled components, showing, in particular, that it is
only the system’s unique minimal extension that is relevant to its dynamics, and this
extension often is tiny part of the original conservative system. We also give a scenario
explaining why certain degrees of freedom of a solid do not contribute to its specific
heat.

KEY WORDS: open systems, time-dispersive dissipative media, conservative systems,
spectral theory

1. INTRODUCTION: OPEN SYSTEMS

AND CONSERVATIVE EXTENSIONS

Our interest in open systems is motivated, as it often happens, by a few con-
crete problems which have something in common. One of the most important
concerns a time-dispersive dissipative (TDD) dielectric medium and the funda-
mental problem of defining and studying the eigenmodes and, more generally, the
spectral theory. Similar problems arise when considering an “open resonator” (or
Helmholtz resonator), which is a regular resonator coupled to an exterior system
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with an absolutely continuos spectrum. A third problem originates in statistical
mechanics, when one considers a finite cube or slab as a small part of an ideal
solid, modeled by a lattice array of coupled oscillators, and wonders how much
information can be extracted about the entire solid from observations made only
from within the finite part. The common feature of above dynamical systems is
that they are open, in other words, the time dynamics do not preserve the en-
ergy and/or the material but exchange them with an exterior which often is not
observable. It turns out that it is possible to reach some interesting conclusions
about properties of open systems based on their minimal conservative extensions
introduced recently in Ref. 2. This is the subject of this paper.

As an indication of some of what lies ahead, we mention a “toy” example of
a mechanical system, which we discuss in Sec 3. The example shows how a high
degree of symmetry in the system, which is related to high spectral multiplicity
of the governing operator, results in many motions of the system being unaffected
by a coupling to another system of “hidden” variables. Indeed, comparisons of
the computation of the specific heat of a crystalline solid to experiment indicate
that certain motions, or degrees of freedom, of the structure have to be left out—
they are “frozen” (Ref. 4, Sec. 3.1, Ref. 5, Sec. 6.4). One of our main theorems
(Theorem 15) applies to this type of situation—it describes how the multiplicity of
the modes of a system that are affected by a coupling to another system is bounded
by the rank of the coupling. Another example of a possible application of this
work is one that inspired us to begin the study, although we do not pursue it at this
point. It concerns a periodic dielectric waveguide that admits “nonrobust” modes at
certain isolated wave number and frequency pairs. These are true (nonleaky) modes
that become leaky through radiation loss under perturbation of the frequency or
wavenumber. The system of modes in the waveguide and the exterior system,
characterized by extended states in the surrounding air, become coupled, and this
coupling produces interesting transmission anomalies.(10)

One can think of two intimately related and complementing ways to define an
open system: (i) intrinsic description by a non-conservative evolution equation;
(ii) as a subsystem of a conservative system. Taking the intrinsic description as
basic we define an open system as one governed by a causal time-homogeneous
linear evolution equation

m∂tv(t) = −iAv(t) −
∫ ∞

0
a(τ )v(t − τ ) dτ + f (t), v(t) ∈ H1, (1)

in which H1 is a separable Hilbert space, m and A are self-adjoint operators in H1

with m > 0, and f (t) is an external force in H1. We always assume that the system
is at rest for negative times t ≤ 0, in other words the following rest condition is
satisfied

v(t) = 0, f (t) = 0 for t < 0. (2)
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The integral term in (1) involving the operator-valued response function a(τ ) is a
subject to the dissipation (no-gain) condition

Re
∫ ∞

0

∫ ∞

0
v(t)a(τ )v(t − τ ) dt dτ ≥ 0 for all v(t) with compact support. (3)

Evidently, the integral term in (1) is responsible for the non-conservative, or open,
nature of the system. Its form explicitly accounts for the system’s causality and
time-homogeneity. The friction function a(t) represents both delayed response and
instantaneous friction; thus we take it to be of the form

a(t) = a∞δ(t) + α(t), (4)

where the coefficient of instantaneous friction a∞ is a bounded non-negative
operator in H1 and the delayed response function α(t) is strongly continuous and
bounded as an operator-valued function of t with respect the norm in B(H1), the
space of bounded operators in H1.

The other important view on an open system is that it is a subsystem of a given
conservative (conservative) system (H,A), described by conservative evolution
equation

M∂tV(t) = −iAV(t) + F(t), V,F ∈ H, (5)

where H is a separable Hilbert space, A is a self-adjoint operator in it, and F(t)
is an external force, with a subsystem identified by a subspace H1 ⊂ H. We refer
to the subsystem’s space H1 as the observable variables.

An intimate relation between the two ways of looking at open systems can
be described as follows, Refs. 2, 3:

(i) an open system defined by (1) and satisfying (3) can always be represented
as a subsystem of a conservative extension in the form (5), and, if minimal,
such an extension is unique up to isomorphism;

(ii) the evolution of a subsystem of a conservative system (5) can be repre-
sented in the form (1) with a friction function a(t) satisfying (3).

More precisely, taking the subsystem point of view on an open system we can
identify an open system (1) with a subsystem of its minimal conservative extension
(H,A) in which a subspace H1 ⊂ H acts as the space of observable variables. Then
we define the open system’s exterior as the orthogonal complement H2 = H � H1,
referring to it as the hidden variables. Having the decomposition H = H1 ⊕ H2

we can recast the evolution Eq. (5) into the following system (see Ref. 2, Sec. 2).

m1∂tv1(t) = −iAv1(t) − i�v2(t) + f1(t), m1 > 0, A is self -adjoint, (6)

∂tv2(t) = −i�†v1(t) − i�2v2(t),�2 is self -adjoint,
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where v1 ∈ H1, v2 ∈ H2, and � : H2 → H1 is the coupling operator. By its
very form, the system (6), involving the coupling operator � and its adjoint
�† : H1 → H2, is explicitly conservative, and �† and � determine the channels
of “communication” from the observable to the hidden and back from the hidden
to the observable. Observe that if one solves the second equation in (6) for v2(t)
and inserts it into the first equation, the resulting equation will be of the form (1)
with friction function

a(t) = �e−i�2t�†, t ≥ 0, (7)

which, as is easy to verify, always satisfies the dissipation condition (3).
In a typical example of an open system embedded within a given conservative

system, this conservative system is not necessarily minimal as a conservative
extension of the open system. The minimal conservative extension is often much
simpler system than the original one. For instance, a time dispersive and dissipative
(TDD) dielectric medium, as described by the Maxwell equations with frequency
dependent electric permittivity ε and magnetic permeability µ, constitutes an open
system. Note that such ε and µ arise through the interaction of the electromagnetic
fields with the molecular structure of the matter, which plays the part of the hidden
variables. But if, however, ε and µ are all that is known, clearly these functions
would not allow one to reconstruct the full molecular structure of the matter but
rather only its minimal conservative extension.

Another simple but instructive example is provided by a general scalar
(one-dimensional) open system as described by (1) with H1 = C and friction
function a(t) satisfying (3) and (4). Observe that the classical damped oscil-
lator with a(t) = a∞δ(t) is a particular case of such general scalar open sys-
tem. The minimal conservative extension of a general scalar open system is
described by a triplet {H2,�2, �} such that (7) holds and its elements H2,�2

and � are constructed as follows, (Ref. 2, Sec. 4.1, 5.1, 5.2, A. 2). First, us-
ing the Bochner Theorem, we obtain the following representation of the friction
function

a(t) =
∫ ∞

−∞
e−iωt dN (ω) (8)

with a unique, non-decreasing, right-continuous bounded function N (ω) defining
a nonnegative measure N (dω) on the real line R. Then

H2 = L2(R, N (dω)), (9)

the operator �2 is the multiplication by ω on L2(R, N (dω)), i.e.

[�2ψ](ω) = ωψ(ω), ω ∈ R, ψ ∈ L2(R, N (dω)), (10)
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and the coupling operator � and its adjoint are

�[ψ(·)] =
∫ ∞

−∞
ψ(ω)N (dω) : L2(R, d N ) → C, (11)

[�†v](ω) = v, v ∈ C, ω ∈ R.

Consequently, the minimal conservative extension of the form (6) becomes here

m∂tv = −iAv − i
∫ ∞

−∞
ψ(ω)dω + f (t), (12)

∂tψ(ω) = −iv − iωψ(ω), ψ ∈ L2(R, N (dω)).

In the case of the classical damped oscillator the measure N (dω) is just the
Lebesque measure, i.e. N (dω) = dω, and the system (12) is equivalent to the Lamb
model (see Refs. 6 and 13), which is a point mass attached to a classical elastic
string (with ω being the wave number). In the case of a general spectral measure
N (dω) one can view the minimal extension (12) as one obtained by attaching a
point mass m to a general “string” as described by a simple, i.e., multiplicity-
one, self-adjoint operator with the spectral measure N (dω). This point of view is
justified by a fundamental construction due to M. G. Krein of a unique “real”
string corresponding to any given spectral measure. This construction as a part of
an exhaustive study of relations between the spectral measure, the corresponding
admittance operator (the coefficient of dynamical compliance), and strings, is
presented in two papers(11,12) by I. S. Kac and M. G. Krein.

To clarify the exact meaning of a string, we give a brief description of a loaded
string S1 [0, L] on an interval [0, L], 0 ≤ L ≤ ∞, as it is presented by Kac and
Krein(11,12). We assume (i) the string S1 [0, L] has constant stiffness 1; (ii) a non-
decreasing nonnegative function M(s), s ≥ 0, describes its mass distribution, with
M(s) being the total string mass on the interval [0, s]. The string states are complex-
valued functions ψ(s), 0 ≤ s ≤ L , from the Hilbert space L2([0, L], M(ds)). The
string dynamics is governed by the following, equation

∂2ψ

∂t2
(s, t) = AM [ψ](s, t), 0 ≤ s ≤ L , (13)

where the string operator AM is defined by the expression

AM [ψ](s) = − d

d M(s)

dψ

ds
(s), 0 ≤ s ≤ L , (14)

with the boundary conditions

ψ ′(0) = 0, ψ ′(L)h + ψ(L) = 0, where h is real. (15)

We do not formulate the original statements from (Ref. 12, Theorem 11.1, 11.2),
because of the considerable space needed to introduce and define all relevant
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concepts, but their principal point is that any nonnegative measure N (dω) on
(−0,∞) satisfying the condition

∫ ∞

−0

N (dω)

1 + ω
< ∞ (16)

is the spectral measure of a unique string as described by the self-adjoint operator
AM defined by (Refs. 14,15). In another words, given a nonnegative measure
N (dω) on the positive semiaxis (−0,∞) which satisfies the condition (16), one
can construct a unique mass distribution M(s), so that the corresponding string
S1[0, L] has N (dω) as its spectral measure. As to the relation between N (dω) and
M(s) a number of insightful examples are provided in (Ref. 12, Sec. 11–13).

Observe now that, if a scalar open system is described by (6), then regard-
less of how complex the original triplet {H2,�2, �} is, its minimal counterpart
{H2,min,�2,min, �min} is always of the universal form (12), and one can think of
it as obtained by attaching a string to a point mass. The concept of a string, as
represented by the spectral measure N (dω) on R, turns out to be useful in de-
scribing the minimal extension of a multidimensional open system, where one has
to use a number of strings for its construction. In particular, we will introduce a
rather simple string spectral decomposition for an arbitrary self-adjoint operator
�2 for which the number of strings equals exactly to the spectral multiplicity of
�2, and a single string has always spectral multiplicity one. We use then the num-
ber of strings involved in the string decompositions to characterize their relative
complexity.

We reiterate the important observation that follows from the above examples
and discussion: the evolution of a subsystem is fully described by its minimal
conservative extension similar to the system (12) which, typically, is substantially
simpler than the original conservative system. Consequently, a significant part of
the modes of the original system can be completely decoupled from the open sys-
tem. These observations make the minimal conservative extension an attractive
instrument: (i) it is a simpler substitute for often enormously complex original
conservative systems (as the atomic structure of the matter), (ii) since it is conser-
vative, the classical spectral theory is available, and (iii) it provides information
about how much of the original system is reconstructible by an observer in the
open subsystem. Based on our considerations hitherto, we see our objectives as
follows:

(i) identify information about a conservative system that is carried by its
subsystem (reconstructibility);

(ii) relate the unique minimal extension of an open system to a given “original”
larger conservative system;

(iii) study the coupling operator of a subsystem and to identify which part of
the system is coupled through it.
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(iv) understand the decomposition of open systems through simultaneous de-
compositions of the internal dynamics of the observable and hidden vari-
ables and the coupling operator between them.

Organization of the paper. Section 2 gives precise definitions and concise math-
ematical discussions of the concepts introduced so far, which will serve as back-
ground for the development of the work.

In Sec. 3, we construct a toy model of a solid that has frozen degrees of
freedom. This example serves to illustrate the role that a high degree of system
symmetry plays in decoupling parts of a dynamical system, as we have already
discussed (p. 2).

Section 4 concerns the reconstructibility of conservative systems from open
systems, in particular, from the dynamics projected to the observable and to
the hidden state variables. The section culminates in one of our main theorems,
Theorem 15, which describes how the number of coupling channels between the
observable and hidden variables bounds the number of strings required in the
construction of the minimal extension.

In Sec. 5, we investigate the decomposition, or decoupling, of open systems
by means of the minimal conservative extension. We show first the equivalence
between (i) the decoupling of the dynamics in a subspace of the open system from
the dynamics in the complementary part of the open system, which is determined
by A1 and a(t), and (ii) splittings of the conservative extension that are invariant
under A1,�2, and �, or, equivalently, that are preserved in H by � and the projec-
tion operator to H1. We then make an analysis of the relation between splittings of
the conservative extension H that preserve its dynamics (equivalently, splittings
of the projected open system on H1) and the singular-value decomposition of the
coupling operator �. If the friction function involves no instantaneous friction
component, that is, if a∞ = 0, then the coupling � is bounded; otherwise it will
be unbounded. More general assumption when � is bounded with respect to the
frequency operator �2, which covers the case of nonzero instanteneous fiction a∞,
is considered in (Ref. 2, Sec. 2.2). In this work we focus on the case of bounded
coupling, in which the analysis is more transparent.

To preserve the conceptual transparency of the arguments and results and to
make them more readily accessible to the reader, we forgo full rigorous arguments
in the development of the ideas and present more elaborate statements of the
theorems as well as their proofs in Sec. 6.

2. CONSERVATIVE EXTENSION AND SPECTRAL COMPOSITION

Our study of the general open linear DD system is based on the ability to
embed it in a unique way into a larger conservative system, in which the observable
system is complemented by a space of hidden degrees of freedom. The frequency



370 Figotin and Shipman

operator for the hidden variables gives rise to a (nonunique) decomposition of
these variables into subspaces that are interpreted as independent “strings” that
are “attached” to the system of observable variables and account for the dissi-
pative and dispersive effects that cause this system to be open. Each string is
characterized by a spectral measure, and exactly how they strings are attached to
the observable variables is described by the coupling operator. In this section, we
give the background for constructing this conservative extension and discuss the
spectral composition of the space of hidden variables into strings and the structure
of the coupling operator.

We reiterate our definition of an open linear DD system and the conditions it
satisfies. We take an open system to be of the form

m∂tv(t) = −iAv(t) −
∫ ∞

0
a(τ )v(t − τ ) dτ + f (t), v(t) ∈ H1, (17)

in which H1 is a separable Hilbert space, m and A are self-adjoint operators in H1

with m > 0, and f (t) is an external force in H1. The function a(t) is subject the
dissipation (no-gain) condition

Condition 1. (dissipation) Let a(t) = a∞δ(t) + α(τ ), where a∞ is a bounded
non-negative operator in H1and α(t) is a strongly continuous and bounded
operator-valued function of t with respect the operator norm inB(H1). a(t) satisfies
the dissipation condition if

Re
∫ ∞

0

∫ ∞

−∞
v(t)a(τ )v(t − τ ) dtdτ ≥ 0 f or all v(t) wi th compact support.

(18)

The systems we consider will satisfy the rest condition

Condition 2. (rest condition) An open system satisfies the rest condition if, for
all t < 0, f (t) = 0 and v(t) = 0.

Under the assumption of the rest condition, the inner integral in equation (18)
can be taken from zero to infinity.

The minimal extension. The following statement, which is a generalization
of the Bochner theorem, plays the key role in the embedding of the open system (1)
into a unique minimal conservative extension (6) (Ref. 2, Theorem 3.2). Given that
the dissipation condition (3) is satisfied, the Proposition 3 provides the existence
of the space H2 of hidden variables, the frequency operator �2 for its internal
dynamics, and the coupling operator �.
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Proposition 3. (mimimal extension) LetB(H1) be the space of all bounded linear
operators in H1. Then a strongly continuous B(H1) -valued function a(t), 0 ≤ t <

∞, is representable as

a(t) = �e−it�2�†, (19)

with �2 a self-adjoint operator in a Hilbert space H2 and � : H1 → H2 a bounded
linear map, if and only if a(t) satisfies the dissipation condition (3) for every
continuous H1 valued function v(t) with compact support. If the space H2 is
minimal–in the sense that the linear span

〈 f (�2)�†v : f ∈ Cc(R), v ∈ H1〉 (20)

is dense in H2— then the triplet {H2,�2, �} is determined uniquely up to an
isomorphism.

Remark 4. In fact, it is sufficient to assume that a(t) is locally bounded and
strongly measurable, strong continuity then follows from (19).

Since, as it turns out, spans similar to (20) arise often in the analysis of open
systems, we name them closed orbits and define them as follows.

Definition 5. (orbit) Let � be a self-adjoint operator in a Hilbert space H and
S is a subset of vectors in H. Then we define the closed orbit (or simply orbit)
O�(S) of S under action of � by

O�(S) = closure of span { f (�)w : f ∈ Cc(R), w ∈ S}. (21)

If H ′ is a subspace of H such that O�(H ′) = H ′, then H ′ is said to be invariant
with respect to � or simply �-invariant.

If � is bounded, the orbit O�(S) is equal to the smallest subspace of H
containing S that is invariant, or closed, under �. Equivalently, it is the smallest
subspace of H containing S that is invariant under (� − i)−1; this latter formu-
lation is also valid for unbounded operators. The relevant theory can be found,
for example, in Ref. 1 or 7. The orbit of S under the of two self-adjoint operators
� and A can be defined by application of continuous functions of � and A to
elements of S, but we shall only need the characterization that

O�,A(S) is the smallest subspace of H containing S

that is invariant under (� − i)−1 and (A − i)−1. (22)

Proposition 3 allows one uniquely to construct the triple {H2,�2, �} and,
consequently, the minimal conservative extension based on the observable friction
function a(t). In fact, there is a statement similar to Proposition 3 which holds for
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a(t) of the most general form (4), in which instantaneous friction is included; see
(Ref. 2, Theorem 7.1). Consideration of the instantaneous friction term leads to an
unbounded coupling operator �; the treatment of unbounded coupling is technical,
and we do not consider it in this work, but treat it in a forthcoming exposition.

It is worthwhile to understand the idea behind the construction of the triple
{H2,�2, �}, as it shows plainly how the time-harmonic decomposition of a(t)
determines the spectral structure of H2. We therefore take a page to explain it.
Introduce the Fourier-Laplace transform of a(t):

â(ζ ) =
∫ ∞

0
a(t)eiζ t dt, for 
ζ > 0. (23)

It turns out that the dissipation condition, Condition 1, on a(t) is equivalent to
the condition that â(ζ ) is a Nevanlinna function: it is an analytic function of
the open upper half plane with values that have positive real (self-adjoint) part.
The restriction of the real part of â(ζ ) to the real line (â(ω) for ω ∈ R is the
Fourier transform of a(t)) is no longer a classical function in general, but rather a
nonnegative operator-valued measure d N (ω). One then takes H2 to be the space
of square-integrable functions from R to H1 with respect to this measure:

H2 = L2(R, H1, d N (ω)), (24)

for which the inner product is defined by

〈 f |g〉H2 = 1

π

∫
R

〈 f (ω)|d N (ω)g(ω)〉H1, (25)

with the integral understood in the Lebesgue–Stieltjes sense. The operator �2 is
simply multiplication by ω:

(�2(g))(ω) = ωg(ω) for g ∈ H2, (26)

the adjoint �† : H1 → H2 of the coupling operator is defined by sending v ∈ H1

to the function with constant value v:

(�†(v))(ω) = v for all ω ∈ R (27)

and � : H2 → H1 is given by

�( f ) = 1

π

∫
R

f (ω) d N (ω). (28)

One can check that this extension indeed produces the friction function a(t) by
observing that, since â(ζ ) is a Nevanlinna function, it is constructible from d N (w)
by the Cauchy transform:

i â(ζ ) = 1

π

∫
R

1

ζ − ω
d N (ω), (29)
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and when applied to a vector v ∈ H1, gives

i â(ζ )v = 1

π

∫
R

1

ζ − �2
(�†(v)(ω))d N (ω) =

(
�

1

ζ − �2
�†

)
v, (30)

which is the Fourier-Laplace transform of −i(�e−i�2t�†)v.

The coupling channels. Now let us understand the structure of the coupling
operator � well. There is a canonical isomorphism between the ranges of � and
�†:

U : Ran � → Ran �†. (31)

This isomorphism is constructed as follows: Observe that

H1 = Ran � ⊕ Null �† and H2 = Ran �† ⊕ Null � (32)

so that � and �† are determined by their actions on Ran �† and Ran �, respectively.
Denote their restrictions to these subspaces (both in domain and target space) by

�R = � Ran(�†) and �
†
R = �† Ran(�) = (�R)†. (33)

U is then given explicitly by

U = (�†
R�R)−1/2�

†
R = �

†
R(�R�

†
R)−1/2. (34)

The positive operators (�R�
†
R)1/2 on Ran � and

(
�
†
R�R

)1/2
on Ran �† have trivial

nullspace and are related through U by3

�
†
R = U (�R�

†
R)1/2 = (�†

R�R)1/2U. (35)

This is the polar decomposition of �†. It allows one to define the “coupling
channels” in a natural way as the pairing of the eigenmodes of the positive part
(�R�

†
R)1/2 in Ran �† ⊂ H1 with the corresponding eigenmodes of (�†

R�R)1/2

in Ran �† ⊂ H2 through U . �† and � provide a direct coupling between these
modes—hence the term “coupling channel.” In the case of unbounded coupling
or continuous spectrum, the modes are not genuine vectors, but are members of
a appropriate furnishings of H1 and H2. For continuous spectrum, we may also
define coupling channels more generally as pairs of spaces identified through U
that are fixed by the positive operators in (35) and therefore mapped to one another

3 It is not always necessary to deal with the restrictions �R or �
†
R ; often � or �† itself is suitable. For

example, ��† and �R�
†
R coincide on the domain of the latter, and the former maps the orthogonal

complement of this domain to zero. The analogous statement holds for �†� and �
†
R�R . U−1 :

Ran �† → Ran � is given by U−1 = U† = (�R�
†
R)−1/2�R = �R(�†

R�R)−1/2, and � has the polar

decompositions �R = U−1(�†
R�R)1/2 = (�R�

†
R)1/2U−1.
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by �† and �. We use this structure amply in Sec. 5, which deals with decomposition
of open systems.

Definition 6. (coupling channel) A coupling channel is a pair (S1, S2), in which
S1 is an invariant space of (�R�

†
R)1/2 in Ran � ⊂ H1 and S2 is an invariant

space of (�†
R�R)1/2 in Ran �† ⊂ H2 such that U (S1) = S2 (see (31) and (34)

for the definition of U). If follows that �†(S1) = S2 and �(S2) = S1. A simple
coupling channel is a coupling channel in which the members S1 and S2 are
one-dimensional. A simple coupling channel corresponds to a pair of eigenmodes
(φ1, φ2) of ��† and �†� for the same eigenvalue.

The extending strings. The conservative system (H2,�2), consisting of the
space of hidden variables together with its operator of internal dynamics, can
be interpreted as a set of independent abstract “strings” to which the system
(H1, m, A) is attached by the coupling channels defined by �. The following
spectral decomposition of H2 with respect to �2 is obtained by a straightforward
modification of Theorem VII. 6 in Ref. 7:

H2
∼=

M⊕
j=1

L2(R, C, dµ j (ω)), dµ j+1 � dµ j , (36)

in which “�” denotes absolute continuity of measures and � is represented by
multiplication by the independent variable ω. We call each component of this
decomposition a “string”; the j-th string is generated by a function f j (ω) of
maximal spectral type in L2(R, C, dµ j (ω)), that is, f j (ω) �= 0 almost everywhere
with repect to dµ j . A string is characterized by its invariance under the action of
�2 and by the property that the restriction of � to the string has multiplicity 1. Of
course, the measures µ j need not be taken to be nested by absolute continuity; even
if they are, a decomposition into strings is not unique. The strings are decoupled
from each other with respect to the action of �2, that is, within the conservative
system (H2,�2).

Definition 7. (string) An abstract string, or simply a string in the system
(H2,�2), is a subsystem (S,�2 S), in which S is a �2 - invariant subspace of H2

and the restriction �2 S of �2 to S has multiplicity 1. A string decomposition of
(H2,�2) is an expression of (H2,�2) as a direct sum of strings:

H2 =
M⊕

j=1

H2 j , �2 =
M⊕

j=1

�2 H2 j , (37)

in which each (H2 j ,�2 H2 j ) is a string in (H2,�).
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Evidently, the isomorphism (36) gives a string decomposition of H2. In
view of the corresponding representation of �2 as multiplication by the inde-
pendent variable ω, construction of a decomposition of H2 into strings is ac-
complished abstractly as follows: Choose a vector v1 ∈ H2 of maximal spectral
type with respect to �2 and obtain H21 = O�2 (v1) ∼= L2(R, C, dµ1(ω)). Then, if
O�2 (v1) �= H2, choose a vector v2 of maximal spectral type in O�2 (v1)⊥ and ob-
tain H22 = O�2 (v2) ∼= L2(R, C, dµ2(ω)), and so on. This infinite iterative process
will produce a direct sum of the form (37). However, if the vectors vn are chosen at
will, this sum may not be all of H2: it may have an orthogonal complement, within
H2, in which �2 has uniform infinite multiplicity. One must be sure to include this
part in the string decomposition. The structure provided by (36) shows that this is
indeed possible.

The number M (which may be infinite) in the spectral representation (36) is
the multiplicity of the operator �2; M is the maximal multiplicity of any of the
spectral values of �2.

Discussion. The coupling of the observable variables H1 to the strings is
accomplished through the coupling channels defined by �. Of course, there is
in general no relation between a given decomposition of H2 into strings and the
coupling channels. If the strings can be chosen in such a way that the coupling
channels split into two sets, one of which couples into one set of strings and the
other of which couples into the complementary set of strings, and the H1-members
of the two sets of channels are contained in orthogonal orbits of �1, then the open
system (H1,�1, a(t)) is decomposed into decoupled systems. We pursue a detailed
study of the decoupling of open systems using their conservative extensions in
Sec. 5.

In a typical example in which it is known that the open system
(H1, m, A1, a(t)) is obtained naturally as the restriction of the dynamics of a given
larger conservative system (H,�) to a subspace of observable variables H1 ⊂ H
(as the open system of electromagnetic fields in a lossy medium or a crystalline
solid in contact with a heat bath), the given conservative system is not necessarily
minimal. The space of hidden variables for the minimal extension is actually a
subspace of the given H2 = H � H1. We call this subspace the “coupled” part of
H2 and denote it by H2c. H2c coincides with H2 if (H,�) is minimal.

One of our main results concerns the situation in which there exist only
finitely many simple coupling channels. This is the case that the rank of � is finite,
such as in lattice systems, as we discuss in some detail as a motivating example in
the following section. The result gives quantitative information about the size of
H2c within H2. As H1 acts as the “hidden” variables for a hypothetical observer
in H2, we have also an analogous result about the size of H1c within H1, where
H1c is the part of H1 that is reconstructible from the dynamics restricted to H2 (or
H2c):
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The (minimal) number of strings needed to extend an open system to a conservative
one is no greater than the number of independent simple coupling channels between
the spaces of observable and hidden variables.

The coupled part of the observable variable space has multiplicity (with respect to �1)
that is no greater than the number of independent simple coupling channels between
the spaces of observable and hidden variables.

This result is stated precisely as Theorem 15 in Sec. 4, and its sigificance is
discussed in Sec. 3.

3. OPEN SYSTEMS AND FROZEN DEGREES OF FREEDOM

We illustrate through a quite concrete example that certain degrees of free-
dom of a DD system can be “frozen”: they are not affected by the interaction
with the hidden variables that causes the energy-dissipation effects. Thus a com-
ponent of the state space that is “decoupled” from the hidden variables evolves
conservatively, independent of the “coupled” DD part. This section may serve as
a motivation for our detailed study in Sec. 4.

Consider a crystalline solid in contact with a heat bath. It has been observed
that certain degrees of freedom of the solid do not contribute to its specific heat
(Ref. 4, Sec. 3.1), (Ref. 5, Sec. 6.4). The calculation of the specific heat by the
Dulong–Petit law is based on the law of equipartition of energy and the number
of degrees of freedom. For that calculation to agree with the experiment, one
has to leave out some degrees of freedom as if they were “frozen” and cannot
be excited by the heat bath. In other words, there are system motions which are
completely decoupled from the solid and heat bath interaction—they cannot be
reached through the combination of surface contact and internal dynamics of the
solid.

To find a sufficiently general scenario for such frozen degress of freedom
we consider an open system decribed by the variable v1 ∈ H1 as a part of the
conservative system (6). We notice then that it is conceivable that the open system
has a part not coupled to its exterior. In other words, there is an orthogonal
decomposition

H1 = H1c ⊕ H1d , (38)

where the subspaces H1c and H1d correspond to states coupled to and decoupled
from the hidden variable v2 ∈ H2. To figure out the decompositon (38) we set
m1 = 1 in (6) (the general case is reduced to this one by proper renormalization
of v1), and consider the system

∂tv1(t) = −i�1v1(t) − i�1v2(t), �1 = �
†
1 (39)

∂tv2(t) = −i�†v1(t) − i�2v2(t) + f2(t), �2 = �
†
2.



Open Systems Viewed Through Their Conservative Extensions 377

The system (39) allows one to single out states v1 which can be excited by the
variables v2, which constitute subspace H1c, namely

H1c = O�1 (Ran �) and, consequently, H1d = H1 � H1c. (40)

Based on this representation we deduce a condition that implies the existence of
decoupled states H1d in the presence of high symmetry in the internal dynamics
in H1 (corresponding to high multiplicity of �1):

mult(�1 H1c) ≤ rank�, (41)

where mult {·} and rank {·} are the spectral multiplicity and the rank of an operator.
We prove this inequality later on in Theorem 15. If �1 and � are generic, the
inequality (41) would also be necessary for the existence of decoupled states. We
will refer to the condition (41) as the spectral multiplicity condition. This condition
(41) readily implies that an open system with low rank coupling and large spectral
multiplicity must have decoupled (frozen) states.

Below we construct a couple of simple examples of Hamiltonian open systems
having decoupled degrees of freedom. A detailed discussion with theorems on the
coupled and decoupled parts of the state variables is presented in Sec. 4.

3.1. An Oscillatory System with Frozen Degress of Freedom

Let us consider an open oscillatory Hamiltonian system S1 described by
momentum and coordinate variables {p, q} with p, q ∈ R

N , where N is finite
natural number. Hence, the Hilbert space of observable variables here is H1 = R

2N .
We assume this open system to be a part of a larger Hamiltonian system for
which the complimentary system S2 of hidden degrees of freedom is described
by variables {π, ϕ} with π, ϕ ∈ G, where G is a real Hilbert space, and, hence,
H2 = G ⊕ G. We don’t write it explicitly, but rather presume that the system
evolves according to the Hamilton equations with the total Hamiltonian to be of
the form

H (p, q; π, ϕ) = h1(p, q) + h2(π, ϕ) + hint(q, ϕ) (42)

where h1 and h2 are correspondingly the internal energies of systems S1 and S2,
and hint is the interaction energy between S1 and S2. We assume h1 and hint to be
of the form

h1(p, q) = (p, p)

2m
+ ξ (q, q)

2
, hint(q, ϕ) =

J∑
j=1

[(q, γ1 j ) − (ϕ, γ2 j )]
2 (43)

where m and ξ are postive constants, 1 ≤ J < N , γ1 j ∈ R
N and γ2 j ∈ G. Evi-

dently we can always choose an orthonormal system of vectors {ẽ1, . . . , ẽN } in
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R
N so that

Eγ = span{γ11, . . . , �1J } = span{ẽN−J+1, . . . , ẽN }, (44)

and introduce the corresponding new variables p̃, q̃ ∈ R
N by

q =
N∑

s=1

qses =
N∑

s=1

q̃s ẽs where {e1, . . . , eN } is the standard basis in R
N . (45)

Next we introduce an orthogonal decomposition

p̃ = p̃′ ⊕ p̃′′, q̃ = q̃ ′ ⊕ q̃ ′′, where p̃′′, q̃ ′′ ∈ Eγ and p̃′, q̃ ′ ∈ R
N � Eγ , (46)

and recast the energies in (43) as follows

h1(p, q) = h′
1( p̃′, q̃ ′) + h′′

1( p̃′′, q̃ ′′), where (47)

h′
1( p̃′, q̃ ′) = ( p̃′, p̃′)

2m
+ ξ (q̃ ′, q̃ ′)

2
, h′′

1( p̃′′, q̃ ′′) = ( p̃′′, p̃′′)
2m

+ ξ (q̃ ′′, q̃ ′′)
2

,

hint(q, ϕ) =
J∑

j=1

[(q̃ ′′, γ̃1 j ) − (ϕ, γ2 j )]
2.

It is evident from (47) that the variables { p̃′, q̃} are decoupled from the system
S2, and all the coupling from S1 to S2 is only through the variables {q̃ ′′}. In fact,
S1 couples directly to S2 through the variables q̃ ′′ only, but this coupling affects
p̃′′ through the internal dynamics in S1. { p̃′, q̃ ′} remain, however, unaffected. This
together with (46) yields the following estimates for the space H1d of “decoupled”
states { p̃′, q̃}.

H1d ⊇ (RN � Eγ )2, and, hence, dim H1d ≥ 2(N − J ). (48)

An elementary analysis of the used arguments shows that the existence of decou-
pled variables in the above example is due to (i) the highly symmetric form of the
Hamiltonaian h1(p, q) in (43), resulting in the maximal spectral multiplicity N ,
and (ii) the coupling of rank J , which is less than N and application of the spectral
multiplicity condition (41).

Notice that, if instead of (43), we would have

h1(p, q) =
N∑

s=1

p2
s

2ms
+

N∑
s=1

ξsq2
s

2
(49)

with all different and generic ms and ξs , then the corresponding spectral multiplic-
ity would be one and there will be no decoupled degrees of freedom. We point out
also that, in this case, for a generic γ1 j in the representation (43) every vector from
the original orthonormal system e1, . . . , eN in R

N has nonzero projections onto
both Eγ and R

N � Eγ , implying that generically none of the original variables
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{ps, qs} can be considered as being decoupled from the system S2. This indicates
that decoupling of variables due the spectral multiplicity, though elementary, is
not trivial.

3.2. Toy Model of a Solid with Frozen Degrees of Freedom

We construct here a toy model for a solid having frozen degrees of freedom
due to high spectral multiplicity, naturally arising from system symmetries. Let us
consider the d-dimensional lattice

Z
d = {n : n = (n1, . . . , nd ), n j ∈ Z} where Z is the set of integers, (50)

and introduce a system S as a lattice array of identical oscillatory systems similar
to that described in the previous section. Namely, we assume that the system state
is of the form u = {[pn, qn], n ∈ Z

d} where with pn, qn ∈ R
N , where N is a finite

natural number.
The system Hamiltonian H (p, q) is assumed to be spatially homogeneous,

local, and of the form

H (p, q) =
∑
n∈Zd

⎡
⎣h1(pn, qn) +

J∑
j=1

‖(∇qn, γ j )‖2

⎤
⎦ , p, q ∈ H, (51)

where the local Hamiltonian h1(p, q) is defined by (43), and the vectors γ j ∈
R

N , 1 ≤ j ≤ J , describe the interactions between neighboring sites through the
discrete gradient ∇. An expansion of the inner sum gives

J∑
j=1

‖∇n(qn, γ j )‖2 =
J∑

j=1

d∑
i=1

((qn, γ j ) − (qn+ei , γ j ))
2, (52)

in which ei = (δi1, . . . δin). Now denoting

|m|0 = max
1≤ j≤d

|m j |, m = (m1, . . . , md ) ∈ Z
d (53)

we consider an arbitrary finite lattice cube

� = �L = {n ∈ Z
d : |n|0 ≤ L} where L ≥ 2 is an integer, (54)

and define its volume |�| by

|�| = number of sites n ∈ �. (55)

Now we introduce a system S� associated with the finite lattice cube λ, in which
the states are functions from � to R

N ⊕ R
N , or {[pn, qn], n ∈ �}, with the
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Hamiltonian

H�(p, q) =
∑
n∈�

⎡
⎣h1(pn, qn) +

J0∑
j=1

‖∇qn, γ j‖2

⎤
⎦ ; qn = 0 for n /∈ �. (56)

Recall now that the system dynamics is described then by the Hamilton equations

dp

dt
= −d H

dq
,

dq

dt
,

d H

dp
, (57)

which, in our case, turns into the linear evolution equation of the form

du

dt
= −i�u, u = [p, q], (58)

in which multiplication by i is defined by i[p, q] = [−q, p]. Without writing the
relevant operator (matrix) � explicitly, we simply denote by �� the respective
matrix for the Hamiltonian H�. Observe now that in view of the form (56) of
the Hamiltonian H�, an open oscillatory system associated with any single site
n ∈ � is exactly of the form considered in the previous section (see (51) and
(52)), and, consequently, it has decoupled degrees of freedom described by the
space (RN � Eγ )2 not depending on n. This implies that the space of decoupled
(frozen) states Hd satisfies

Hd ⊇ (RN � Eγ )2|�|. (59)

If we put H = H1d ⊕ H1c, then this, combined with the fact the local Hamiltonians
(h1) at all sites are identical gives the rank of the coupling as J |�|. By the spectral
multiplicity condition (41) we then obtain a bound on the spectral multiplicity of
the restriction �� Hc to the “coupled” part Hc:

mult(�� Hc) ≤ J |�| = J (2L + 1)d . (60)

In fact, a more eleborate analysis based on introduction of lattice toruses along
with lattice cubes can produce an approximate formlula of the following form

mult��

|�| = C0 + O
(|�|− 1

d
)
, (61)

where C0 is a constant similar to J .
The estimates (60) and (61) for the solid toy model indicate that the high spec-

tral multiplicity can cause many degrees of freedom to be comletilely decoupled
from the rest of the system.

4. RECONSTRUCTIBILITY FROM OPEN SUBSYSTEMS

According to our general strategy, we regard an open system within its con-
servative system from two points of view that are closely related. In the first,
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we consider a conservative system composed of two coupled subsystems, each
treated equally. Because of the coupling, the subsystems are open, and we ana-
lyze the extent to which the conservative system is reconstructible from either of
its open subsystems. In the second, the objects that play the leading role are the
“master” conservative system and a given subsystem. The subsystem is open, as
it interchanges energy with the master system.

4.1. Two Coupled Open Systems

We first investigate a conservative system composed of two coupled open
ones. Typically, one system will be observable, such as a resonator, and the other
will represent its “exterior” which we associate with the hidden degrees of freedom.

Let us begin with two conservative systems, Closed System 1, identified by
the triple (H1, m1, A1) that represents an observable system

m1∂tv1(t) = −iA1v1(t) + f1(t) in H1 (62)

satisfying the rest condition (Condition 2, p. 8), and another linear system, Closed
System 2, identified by the triple (H2, m2,�2) that represents the system of hidden
variables

m2∂tv2(t) = −iA2v2(t) + f2(t) in H2 (63)

also satisfying the rest condition. A1 and A2 are self-adjoint, and the mass operators
m1 and m2 are positive. We then couple the two systems through a bounded operator
� and its adjoint:

� : H2 → H1, �† : H1 → H2. (64)

The conservative system as composed of these two subsystems then has the form

m1∂tv1(t) = −iA1v1(t) − i�v2(t) + f1(t),
(65)

m2∂tv2(t) = −i�†v1(t) − iA2v2(t) + f2(t).

Using the following rescaling transformation

v j → m
− 1

2
j v j , A j → m

1
2
j � j m

1
2
j , f j → m

1
2
j f j , � → m

1
2
1 �m

1
2
2 (66)

we recast the system (65) into the simpler form

∂tv1(t) = −i�1v1(t) − i�v2(t) + f1(t),
(67)

∂tv2(t) = −i�†v1(t) − i�2v2(t) + f2(t),

which we will use from now on. We refer to the operators �1 and �2 as the
frequency operators for the observable and hidden systems.
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In matrix form, the system (67) is written as

∂tV = −i�V + F , V,F ∈ H = H1 ⊕ H2, (68)

in which the frequency operator � has the block-matrix structure

� =
[

�1 �

�† �2

]
. (69)

Because of the coupling, both systems become open. Their dynamics are obtained
by projecting the dynamics of the large conservative system in H to H1 and H2

separately. For System 1, this means setting the forcing from the second equation
of the system (67) to zero ( f2(t) = 0), solving for v2, and then inserting the
result into the first equation. This, together with an analogous computation for
System 2, results in the dynamical equations for the open systems Open System 1
(H1,�1, a1(t)) and Open System 2 (H2,�2, a2(t)):

∂tv1(t) = −i�1v1(t) −
∫ ∞

0
a1(τ )v1(t − τ ) dτ + f1(t) in H1, (70)

∂tv2(t) = −i�2v2(t) −
∫ ∞

0
a2(τ )v2(t − τ ) dτ + f2(t) in H2, (71)

in which

a1(t) = �e−i�2t�† and a2(t) = �†e−i�1t�, (72)

and the functions a j (t) are the friction functions. The rest condition, Condition 2
continues to hold, and, by virtue of their form, the equations automatically satisfy
the power dissipation condition, Condition 1.

We ask the question: How much of H2 can be reconstructed from Open System
1 (70) alone; in other words, how much information about the hidden variables is
encoded in the friction function a1(t) for the observable variables? We can view
a1(t) as a dynamical mechanism by which an observer confined to the observable
state variables detects or influences the hidden degrees of freedom. The subspace
of H2 that is reconstructible by a1(t) we call the coupled component of H2 and
denote it by H2c. Clearly this subspace is determined by the coupling channels to
H2 given by �† and the internal action by �2 on H2; this is explicitly evident in
the form a1(t) = �e−i�2t�†.

The question of the extent to which the observable system determines the
hidden is tantamount to that of determining the unique minimal conservative
extension of Open System 1 within the large system (H,�) (see Sec. 2). According
to Proposition 3 the Hilbert state space Hmin ⊃ H1 of this conservative extension
is simply the orbit (see Definition 5) of H1 under the action of �, as a subspace of
H:

Hmin = O�(H1) = H1 ⊕ H2c, H2c := Hmin � H1. (73)
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In addition, it can be shown that H2c ⊆ H2 is invariant under the action of �2,
namely

�2 H2c ⊆ H2c ⊆ H2, (74)

and we refer to H2c as the coupled component of H2. This construction of H2c ⊆ H2

gives rise to a canonical �2-invariant orthogonal decomposition of the hidden state
variables,

H2 = H2c ⊕ H2d . (75)

We refer to the subspace H2d defined in (75) as the decoupled component of H2.
The systems in H2c and H2d evolve independently in time by the internal dynamics
�2 of the hidden variables H2. Furthermore, since it can be shown that the operator
range Ran(�†) ⊂ H2c, we see that no forcing function from H2d can influence the
dynamics of the observable variables and, in turn, does not influence the dynamics
of H2c through the coupling.

In an analogous way, we can ask, how much of H1 can a hypothetical observer
confined to H2 reconstruct? The component H1c of H1 that is reconstructible by
an observer in the hidden state variables we call the coupled component of H1. Its
orthogonal complement H1d is the decoupled component of H1, and we have the
decomposition

H1 = H1c ⊕ H1d (76)

which is invariant under the action of �1. The state space of the unique minimal
conservative extension of Open System 2 is H1c ⊕ H2.

With respect to these decompositions of the observable and hidden variables
into the coupled and decoupled components H = H1d ⊕ H1c ⊕ H2c ⊕ H2d , the
frequency operator � for the conservative system (67) has the matrix form

� =

⎡
⎢⎢⎢⎣

�1d 0 0 0

0 �1c �c 0

0 �
†
c �2c 0

0 0 0 �2d

⎤
⎥⎥⎥⎦ , (77)

in which the subscripts refer to retrictions of the domain:

�ic = � Hic, �id = � Hid , i = 1, 2, and �c = � H2c. (78)

We can see from (77) that the decoupled parts H1d and H2d , can be analyzed inde-
pendently of the rest of the system justifying their name “decoupled.” Furthermore,
the conservative subsystem (H1c ⊕ H2c,�c) with frequency operator

�c =
[

�1c �c

�
†
c �2c

]
, (79)



384 Figotin and Shipman

which consists of the part of H1 reconstructible by Open System 2 alone and the
part H2 reconstructible by Open System 1 alone, is itself fully reconstructible
by either of the open subsystems (H1c,�1c, a1(t)) or (H2c,�2c, a2(t)). This is
equivalent to the statement that (H1c ⊕ H2c,�c) is the unique minimal conserva-
tive extension, realized as a subsystem of (H,�), of each of its open components
separately. This motivates the following definition.

Definition 8. (reconstructibility) A conservative linear system composed of two
coupled subsystems

∂tv1(t) = −i�1v1(t) − i�v2(t) + f1(t),

∂tv2(t) = −i�†v1(t) − i�2v2(t) + f2(t),

with v1(t) ∈ H1 and v2(t) ∈ H2 is called reconstructible if it is the minimal con-
servative extension of each of the open projected linear systems

∂tv1(t) = −i�1v1(t) −
∫ ∞

0
�e−i�2τ�†v1(t − τ ) dτ + f1(t) in H1,

∂tv2(t) = −i�2v2(t) −
∫ ∞

0
�†e−i�1τ�v2(t − τ ) dτ + f2(t) in H2.

In other words, the conservative system (H1 ⊕ H2,�)(� is defined by its decom-
position (69)) is reconstructible if all of H2 can be reconstructed from the open
system (H1,�1, a1(t)) and all of H1 can be reconstructed from the open system
(H2,�2, a2(t)).

We say that H2 is reconstructible from the open system (H1,�1, a1(t)) if
H1 ⊕ H2 is (isomorphic to) the state space for the minimal conservative extension
of (H1,�1, a1(t)).

A conservative system that is reconstructible may possibly be further decom-
posed into independent conservative subsystems that commute with the projection
to H1, in other words, that are of the form H ′

1 ⊕ H ′
2 with H ′

1 ⊆ H1 and H ′
2 ⊆ H2.

However, H ′
1 will not contain the entire range of � and accordingly will not contain

all of the information of the delayed response function a1(t). We take up these
finer decompositions further in Sec. 5.

The simplest reconstructibility theorem is as follows. More general recon-
structibility statements as well as the proofs are given in Sec. 6.

Theorem 9. (system reconstructibility) Let a conservative “master” system com-
posed of two coupled systems be given:

∂tv1(t) = −i�1v1(t) − i�v2(t) + f1(t), (80)

∂tv2(t) = −i�†v1(t) − i�2v2(t) + f2(t), (81)
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with v1(t) in the state space H1 and v2(t) in the state space H2, and let the
coupling operator � : H2 → H1 be bounded. Let also H2c denote the subspace of
H2 that is reconstructible from Open System 1 and H1c the subspace of H1 that is
reconstructible from Open System 2.

i. H1c consists of the set of states of H1 that are accessible by applying the
internal dynamics of H1 (given by �1) to all vectors in H1 to which H2 is
directly coupled by �, that is,

H1c = O�1 (Ran �). (82)

Similarly,

H2c = O�2 (Ran �†). (83)

ii. The restriction of the master system to H1 ⊕ H2c is the unique minimal
conservative extension of H1, and the restriction to H1c ⊕ H2 is the unique
minimal conservative extension of H2.

iii. The restriction of the master system to H1c ⊕ H2c is the unique recon-
structible subsystem of the master system that completely determines
the friction functions of Open Systems 1 and 2, namely �e−i�2t�† and
�†e−i�1t�.

iv. (H1 ⊕ H2,�) is reconstructible if and only if H1 and H2 have no nontrivial
�-invariant subspaces.

Example: Two Coupled Finite Systems. With a simple finite-dimensional
example of two coupled open systems, we illustrate the interaction between the
two components and the extent to which each is determined, or reconstructible, by
the other. The observations are generalized and proved in Theorem 9.

Let us begin with the state space of observable variables H1 = C
2, with

variable vector v ∈ H1 and an open DD system

∂tv(t) = −i

[
a b
b∗ c

]
v(t) − i

[
α

β

]
[α∗ β∗]

∫ ∞

0
(|γ |2e−iµ1τ

+|δ|2e−iµ2τ )v(t − τ ) dτ, (84)

in which we assume |α|2 + |β|2 = 1 and µ1 and µ2 are real. The operator for the
internal dynamics in H1 is

�1 =
[

a b

b∗ c

]
=

[
α −β∗

β α∗

] [
λ1 0

0 λ2

] [
α∗ β∗

−β α

]
, (85)

in which a, c, λ1, and λ2 are real. The delayed-response function

ia1(t) =
[

α

β

]
[α∗ β∗](|γ |2e−iµ1τ + |δ|2e−iµ2τ ) (86)
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involves two frequencies, each with a matrix factor of rank one. The space H2 of
hidden variables is therefore isomorphic to C

2; in fact,

ia1(t) = �e−i�2t�†, (87)

where

� =
[

α

β

]
[γ ∗ δ∗], �2 =

[
µ1 0

0 µ2

]
. (88)

The minimal conservative extension of (H1,�1, a1(t)) is (H,�), where

H = H1 ⊕ H2, � =

⎡
⎢⎢⎢⎢⎣

a b

b∗ c

αγ ∗ αδ∗

βγ ∗ βδ∗

α∗γ β∗γ
α∗δ β∗δ

µ1 0

0 µ2

⎤
⎥⎥⎥⎥⎦ . (89)

In this particular example, � has rank 1 because the matrices in ia1(t) for the two
frequencies have the same range. This range, which is the range of �, happens
to be an eigenspace for �1 corresponding to the eigenvalue λ1 (Eq. 85). The
delayed-response function for the reduced dynamics in H2 therefore only involves
this single frequency:

a2(t) =
[

γ

δ

]
[γ ∗ δ∗] eiλ1t . (90)

The state space of the minimal conservative extension of (H2,�2, a2(t)) is the
three-dimensional space

H1c ⊕ H2, (91)

in which H1c is the “coupled component” of H1, consisting of the eigenspace for
the eigenvalue λ.

If one projects the dynamics to H1c, then its minimal conservative extension
is the same as that of (H2,�2, a2(t)). Thus, the space H2, as well as its internal
dynamics operator �2 and the coupling �, are reconstructible from the dynamics
projected to H1c, just as H1c,�1 restricted to H1c, and � are reconstructible
from (H2,�2, a2(t)). We therefore call the system in H1c ⊕ H2 reconstructible
(Definition 8).

In Theorem 9, we prove that a coupled pair of open systems forming a
conservative system, H1 ⊕ H2 admits a unique reconstructible subsystem system
H1c ⊕ H2c, containing all the information of a1(t), in which the projection of
the dynamics to each part is sufficient to reconstruct the other. As in the simple
example of this subsection, it is always true that H1c is the �1-orbit of Ran � and
H2c is the �2-orbit of Ran �†.
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4.2. Open Subsystems of Conservative Systems

Often an open system arises as a part of a given conservative system (H,�)
projected onto an observable subspace H1 ⊂ H. We investigate the way in which
the state space Hmin of the minimal conservative extension of the open system in
H1 is reconstructed within the spectral structure of (H,�). We shall see that Hmin

is generated by the projections of all vectors in H1 onto the eigenspaces of �, as
well as by the projections, onto the eigenspaces of �, of those vectors in H1 and
H � H1 that are directly coupled through � (the ranges of � and �†). We discuss
both points of view. We investigate similar constructions for the generation of
H1c and H2c by eigenmodes of �1 and �2 and arrive at one of our main results,
Theorem 15, which bounds the number of extending strings by the rank of the
coupling.

In the case, say, of a finite resonator embedded within an infinite planar lattice,
for which the multiplicity of each eigenvalue is infinite, this result has immediate
consequences: namely, the multiplicities of the eigenfrequencies for the minimal
extension (Hmin,� Hmin) are uniformly bounded and hence Hmin is but a very
small part of H. The perhaps more interesting point of view, in which the directly
coupled modes (the ranges of � and �†) generate Hmin, has special significance
for an object in surface contact with an infinite medium.

4.2.1. Generating the Minimal Extension from the Observable States.

Not surprisingly, all of the modes (eigenfunctions) of the frequency operator
� that contribute to the �-mode decomposition of any one of the vectors in the
“observable” space H1 must be included as states of the minimal extension. These
modes, in turn, generate all of the observable vectors, and therefore the entire space
Hmin.

To understand this, let us begin with the case in whichH is finite dimensional.
Let {λα}n

α=1 be the distinct eigenvalues of �. We then have a decomposition of H
into orthogonal eigenspaces

H =
n⊕

α=1

Hα, (92)

with respect to which the operator � is diagonal:

for each v =
n∑

α=1

vα, �v =
n∑

α=1

λαvα. (93)

As we have discussed, Hmin is the subspace of H that is generated by the vectors
in H1 through the operator �, in other words, it is the orbit O�(H1) of H1 under
�. In the finite-dimensional case, this is simply the vector space spanned by
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the vectors �k(v) for v ∈ H1 and 0 ≤ k < n. Since the monomials λk , restricted
to the spectrum of �, span the space of functions defined on the spectrum, we
have vα ∈ Hmin for each α = 1, . . . , n. Now since the vector v ∈ H1 is in turn
generated through linear combination by its projections vα , we conclude that Hmin

is generated by the projections of H1 onto the eigenspaces of �, denoted by
πα(H1):

Hmin = O�(H1) =
n⊕

α=1

πα(H1). (94)

Thus we have a spectral decomposition for (Hmin,� Hmin) explicitly in terms of
subspaces of the eigenspaces for (H,�).

This result can be extended to the case in which H is infinite-dimensional
and � has pure point spectrum, say {λα}∞α=1 (Theorem 13). In this case, the
class of polynomial functions p of the operator � of degree less than n, which
was sufficient for the finite-dimensional case, must be expanded to include all
continuous functions f (�) as understood in the classical functional calculus.
Applying all continuous functions of � to all vectors in H1 and taking the closure
gives the orbit O�(H1), and the projections πα(H1) onto the eigenspaces are
contained in this orbit. We obtain again the spectral decomposition (94), in which
n = ∞.

A typical frequency operator � for a conservative dynamical system does
not have pure point spectrum, and we now face the problem of extending this con-
struction of Hmin to the case of general spectrum. The fairly simple construction
of Hmin we have discussed for pure point spectrum provides us with the correct
principle:

Rule 10. (extension by modes of � via observable variables) The minimal con-
servative extension of (H1,� H1, a1(t)) is generated by linear superposition,
within the given master system (H,�), by all of the modes that appear in the
eigenmode decomposition, into eigenmodes of �, of any of the states of H1.

When � has continuous spectrum, its modes are no longer finite-norm (finite-
energy) states—they no longer exist as elements of the Hilbert space H. In this
case, it one can replace the projections πα(H1) of H1 to the eigenspaces of � with
a set of spectral projections associated with �:{

π (H1) : π =
∫

�

d Eλ for some interval � of R

}
, (95)

in which d Eλ is the spectral resolution of the identity associated with �. This set
generates Hmin by linear combination and closure. Of course, the spaces π (H1)
are in general no longer orthogonal to each other for two different choices of the
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projection π , so we no longer have an orthogonal decomposition as in Eq. (94).
The projections can be localized to include only spectral intervals of length ε for
arbitrarily small ε, so that one approaches spectrally localized projections, nearly
representing eigenmode spaces, as ε → 0. However, the projections no longer
make sense for ε = 0 (unless the spectrum has no continuous part).

Fortunately, one need not abandon the use of modes altogether when dealing
with continuous spectra. Just as the Laplace operator −�i∂xi xi has the extended
states eiλx for its modes, which generate all sufficiently regular functions through
integral superposition, a proper treatment of modes of � and decomposition of
states into these modes is accomplished by a furnishing of H : H+ ⊂ H ⊂ H−.
The modes lie in the larger Hilbert space H−, endowed with a smaller norm, with
respect to which H is dense in H−. All elements of the smaller space H+, which
is dense in H, are represented as integral superpositions of the modes:

v =
∫

�v(λ)dµ, (96)

in which dµ is a spectral measure for �,� is a dµ-measureable function with
values in H−, and �(λ) is a mode for � for the frequency λ. This means that
〈�(λ)|�|v〉 = λ〈�(λ)|v whenever all of these objects are defined. See, for exam-
ple, Ref. 8.

With this structure, each state v ∈ H1 ∩ H+ is decomposed into its modes
�v(λ), where λ runs over all spectral values. Integral superpositions of these modes
then generate Hmin:

Hmin =
{∫

�(λ)dµ : � ∈ L2(R,H−, dµ),∀λ ∈ R∃v ∈ H1, �(λ) = �v(λ)

}
.

(97)

A rigorous treatment of generalized modes is quite technical; we do not pursue
it in this work but leave it for a forthcoming work in which we treat unbounded
coupling.

4.2.2. Generating the Conservative Extension from
the Coupling Channels

The role of the coupling operator � and the space of hidden variables H � H1

is not emphasized in the construction of Hmin from H1 by the action of �. We
shall now show an alternative way to generate Hmin, provided H1 = H1c, that is,
provided that H1 has no �-invariant subspaces. This is by the action of � on Ran �

and Ran �†, or by the action of � on the coupling channels (see Definition 6).
We shall see that the minimal reconstructible system described in Theorem 9

is obtained by linear superposition of the projections of the ranges of � and �†

onto the eigenspaces of �. This can also be expressed as linear superposition of
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those modes of � that are present in the mode decompositions of all vectors in
Ran � and Ran �†.

To understand why this is true, let us decompose � into a diagonal part
representing the internal dynamics of the observable and hidden variables and a
part representing the coupling:

� = ◦
� + ◦

�,
◦
� =

[
�1 0

0 �2

]
,

◦
� =

[
0 �

�† 0

]
. (98)

Since Ran
◦
� is contained inO�(Ran

◦
�) and � = ◦

�+ ◦
�, the operator � generating

the orbit can be replaced by
◦
�: Recalling the definition of the orbit of a subset of

a Hilbert space under the action of two operators (22), we obtain

O�(Ran
◦
�) = O

�,
◦
�

(Ran
◦
�) = O ◦

�,
◦
�

(Ran
◦
�) = O ◦

�
(Ran

◦
�). (99)

Now, by the decoupling of the action of
◦
� with respect to the decomposition H1 ⊕

H2 and the splitting Ran
◦
� = Ran� ⊕ Ran�†, we obtain a simple characterization

of this orbit:

O ◦
�

(Ran
◦
�) = O ◦

�
(Ran �) ⊕ O ◦

�
(Ran�†) = O�1 (Ran �) ⊕ O�2 (Ran�†).

(100)

Assuming that H1 = H1c, or, equivalently, that H1 has no nontrivial �-invariant
subspace (see Theorem 9, part (i)), we obtain

Hmin = O�(Ran
◦
�). (101)

We may now adapt our previous discussion concerning the construction of

Hmin from H1 in order to understand the construction of Hmin from Ran
◦
� within

the spectral structure of (H,�) simply be replacing H1 in the arguments with

Ran
◦
�.

Rule 11. (extension by modes of � via coupling channels) If H1 contains no �-
invariant subspace, then the minimal conservative extension of (H1,� H1, a1(t))
is generated by linear superposition, within the given master system (H,�), by
all of the modes that appear in the eigenmode decomposition, into eigenmodes of
�, of any of the states in the ranges of � and �†.

The representations (94) and (97) with Ran
◦
� replacing H1 are valid for the

pure point and general cases, repectively. In the case of pure point spectrum, in par-
ticular for finite systems, we can reformulate Rule 11 in terms of a characterization
of reconstructiblity:
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(H = H1 ⊕ H2,�) is reconstructible if and only if, on each mode of �,
◦
�

does not vanish.

4.2.3. Generating H1 and H2 from �

These rules can be applied as well to the two components of the reconstructible
system (H′ = H1c ⊕ H2c,� H′) from the operators of their internal dynamics,
�1 and �2. Recall from part (i) of Theorem 9 that the “coupled” part H1c of H1

is generated through the action of the frequency operator �1 on the range of �.
We obtain therefore, by the same reasoning as before, results on the construction
of H1c by superposition of the modes of �1 obtained from the projections of Ran
� onto the eigenspaces of �1. Of course, this applies equally to the construction
of H2c by modes of �2.

Rule 12. (Generating H1c and H2c) The “coupled” part Hic of Hi is generated
by linear superposition, within the system (Hi ,�i ), by all of the modes that appear
in the eigenmode decomposition, into modes of �i , of any of the states in Ran
�(i = 1) or Ran �†(i = 2).

In the case of pure point spectrum,

H1c = O�1 (Ran �) =
n⊕

α=1

π1α(Ran �), (102)

H2c = O�2 (Ran �†) =
m⊕

α=1

π2α(Ran �†), (103)

in which π1α and π2α are projections onto the eigenspaces of �1 in H1 and �2 in H2,
respectively. If �i has continuous spectrum, then, as in our previous discussion,
we may replace projections onto the eigenspaces by general spectral projections,
that is, those projections that commute with �i (see (95)). The discussion of
generalized modes and a construction of the form (97) for Hic is also applicable.

4.2.4. Summary and Theorem

The results of the discussion are collected in the following theorem and
proved in Sec. 6 (see the proof of Theorem 14).

We have made the statement about decomposition into modes rigorous in
part (i) of the theorem for the case of pure point spectrum, in which the modes
are genuine elements of H; a weaker rigorous statement in which the modes
are replaced by arbitrary spectral projections, is given for general spectrum in
part (i i).
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Theorem 15 is one of our main results; it summarizes our conclusions about
bounding the multiplicity of the frequency operators � Hmin and �ic = �i Hic

by the rank of �. In particular, the result for �2c states that the number of strings
needed to construct the minimal extension is bounded by the number of coupling
channels.

Theorem 13. (spectral representation of the minimal extension) Let a conser-
vative system (H,�) be given, and let (Hmin ⊂ H,� Hmin) be the minimal con-
servative extension of the open system (H1,� H1, a1(t)) obtained by projecting
the dynamics of (H,�) onto the subspace H1 ⊂ H. The coupling operator � is
assumed to be bounded. (By the “projection” of a subset of a Hilbert space onto
a subspace, we refer to the image of the orthogonal projection operator in the
Hilbert space onto the subspace.)

i. If � has pure point spectrum, then Hmin is the closure of the linear span
of the projections of H1 onto the eigenspaces of � in H:

Hmin = O�(H1) =
n⊕

α=1

πα(H1). (104)

If, in addition H1 contains no nontrivial �-invariant subspace, then Hmin

is the closure of the linear span of the projections of Ran
◦
� onto the

eigenspaces of �:

Hmin = O�(Ran
◦
�) =

n⊕
α=1

πα(Ran
◦
�). (105)

Here, n may be equal to infinity.
ii. Hmin is the closure of the linear span of the projections{

π (H1) : π =
∫

�

d Eλ f or some interval � of R

}
. (106)

If H1 contains no nontrivial �-invariant subspace, thenHmin is the closure
of the linear span of the projections{

π (Ran
◦
�) : π =

∫
�

d Eλ f or some interval � of R

}
. (107)

For arbitrary ε > 0, the set of projections can be restricted to those that
vanish outside some spectral interval � of length ε.

iii. Let P1 denote orthogonal projection onto H1 within H. If � has pure point
spectrum, then Hmin = H if and only if P1(φ) �= 0 for each eigenmode φ

of �. If, in addition, H1 has no nontrivial �-invariant subspace, then

Hmin = H if and only if
◦
�(φ) �= 0 for each eigenmode φ of �. In fact,
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(H = H1 ⊕ H2,�) is reconstructible if and only if
◦
�(φ) �= 0 for each

eigenmode φ of �.

Theorem 14. (spectral representation of the hidden variables) Let the hypotheses
of Theorem 13 continue to hold.

i. If �2 has pure point spectrum, then H2c is the closure of the linear span
of the projections of Ran �† onto the eigenspaces of �2 in H2:

H2c = O�2 (Ran �†) =
n⊕

α=1

π2α(Ran �†). (108)

Here, n may be equal to infinity.
ii. H2c is the closure of the linear span of the projections

{
π (Ran �†) : π

∫
�

d E2,λ for some interval � of R

}
. (109)

For arbitrary ε > 0, the set of projections can be restricted to those that
vanish outside some spectral interval � of length ε.

iii. If �2 has pure point spectrum, then H2c = H2 if and only if �†(φ) �= 0
for each eigenmode φ of �2.

The following theorem is a corollary to the preceding theorems. It is one of our
main results, which we have alluded to in the introduction and in the construction
of the toy model of a solid with frozen degrees of freedom in Sec. 3. The second
part shows that the rank of the coupling operator bounds the number of extending
strings needed in the minimal conservative extension of an open system.

Theorem 15. (bound on number of strings)

i. The multiplicity of each spectral value λ of � Hmin is bounded above by
the dimension of H1 and, if H1c = H1, by twice the rank of �:

multiplicity (λ) ≤ min{dim(H1), 2 rank(�)}. (110)

ii. The multiplicity of each spectral value λ of �i Hic is bounded above by
the rank of �:

multiplicity (λ) ≤ rank(�). (111)

For i = 2, this states that the number of abstract strings needed to extend
(H1,� H1, a1(t)) minimally to a conservative system is no greater than
the number of coupling channels between H1 and H2.
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5. DECOMPOSITION OF COUPLED SYSTEMS

It can happen that a given open system splits into two or more smaller
independent subsystems, that are decoupled from each other, leading to a natural
simplifying decomposition. But, depending on the choice of coordinates, such a
natural decomposition may not be evident right away. We ask then if there is a
systematic way to find such a decomposition. In this section we intend to answer
this question, at least under tractable conditions; the most general conditions are
treated in Sec. 6.

Let us return to our observable open system:

∂tv1(t) = −i�1v1(t) −
∫ ∞

0
a1(τ )v1(t − τ ) dτ + f1(t) in H1, (112)

and suppose that there is a subspace of observable variables H ′
1 ⊂ H1 such that

an observer confined to this subspace experiences no influence from the rest of
the observable space, that is, H ′

1 is decoupled from H ′′
1 = H1 � H ′

1 under the
dynamics of (112). More precisely, let π ′

1 be the orthogonal projection onto H ′
1

in H1 and π ′′
1 = IH1 − π ′

1 the projection onto H ′′
1 and let v′

1(t) = π ′
1v1(t) and

f ′
1(t) = π ′

1 f1(t). Then the decoupling of H ′
1 means that

π ′
1�1π

′′
1 = 0 and π ′

1a1(t)π ′′
1 = 0 for all t, (113)

so that v′(t) satisfies a dynamical equation within H ′
1, with no input from H ′′

1 :

∂tv
′
1(t) = −i�1v

′
1(t) −

∫ ∞

0
a1(τ )v′

1(t − τ ) dτ + f ′
1(t) in H ′

1. (114)

The question then arises: Does this imply the reciprocal condition that that H ′′
1

evolves independently of H ′
1? In other words, if H ′

1 is not influenced by H ′′
1 ,

then does it follow that H ′′
1 is not influenced by H ′

1? We shall prove that the
answer is affirmative. This means that π ′′

1 a1(t)π ′
1 = 0 also, so that the splitting

H1 = H ′
1 ⊕ H ′′

1 is preserved by a1(t), for all t . In this case, we have a decoupling
of the open system (112) into two independent open systems, so that

∂tv
′′
1 (t) = −i�1v

′′
1 (t) −

∫ ∞

0
a1(τ )v′′

1 (t − τ ) dτ + f ′′
1 (t) in H ′′

1 (115)

also holds.
Such decoupling of open systems is easy to understand from the point of view

of the minimal conservative extension (H,�) of (H1,�1, a1(t)). If (H′,�′) and
(H′′,�′′) are the minimal conservative extensions of the open systems in H ′

1 and
H ′′

1 , then (H := H′ ⊕ H′′,� := �′ ⊕ �′′) is the minimal conservative extension
of (H1,�1, a1(t)).
The decoupling of the open system (112) is tantamount to the existence of a
projection in its conservative extension H, namely the projection π ′ onto H′,
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that commutes both with � as well as with the projection P1 onto H1. This is the
content of Theorem 17 (and Theorem 21 in Sec. 6) below.

The structure of this decomposition and its implications for the decomposition
of �1,�2, and � can be seen in a four-fold decomposition of (H,�). Denote
by P2 = I − P1 the projection onto H2 and by π ′′ = I − π ′ the projection onto
H′. We note that P1 and π ′ commute if and only if H admits the (orthogonal)
decomposition

H = H ′
1 ⊕ H ′′

1 ⊕ H ′
2 ⊕ H ′′

2 , (116)

where the components are, respectively, the images of the projections
π ′ P1, π

′′ P1, π
′ P2, and π ′′ P2. With respect to the decomposition (116), the op-

erator � has the form

� =

⎡
⎢⎢⎢⎣

�′
1 0 �′ 0

0 �′′
1 0 �′′

�′† 0 �′
2 0

0 �′′† 0 �′′
2

⎤
⎥⎥⎥⎦ , (117)

in which the splittings H1 = H ′
1 ⊕ H ′′

1 and H2 = H ′
2 ⊕ H ′′

2 simultaneously diag-
onalize �1,�2, and �.

This type of system decoupling of a conservative extension (H,�) of a given
open system (H1,�1, a1(t)) we call s-invariant (for system-invariant) with respect
to H1.

Definition 16. (s-invariant decomposition) Let a conservative system (H,�) be
given, along with an open subsystem obtained by projecting the dynamics onto a
subspace H1 ⊂ H, and let P1,�1,�2, and � be defined as before. A decomposition
H = H′ ⊕ H′′, with projection π ′ onto H′, is called s-invariant with respect to
H1 (or P1) if the following equivalent conditions hold:

i. π ′ commutes with � and P1;
ii. H′ (or, equivalently, H′′) is of the form H′ = H ′

1 ⊕ H ′
2, where H ′

1 ⊂ H1

and H ′
2 ⊂ H2, and H′ is invariant under �(O�(H′) = H′).

An s-invariant decomposition of a conservative extension of (H1,�1, a1(t))
is understood to be s-invariant with respect to the subspace H1.

Theorem 17. (decoupling criterion) Let the open system (112) characterized by
the triple (H1,�1, a1(t)) be given, along with a subspace H ′

1 ⊂ H1. The following
are equivalent:

i. The projected dynamics of the open system onto H ′
1 is not influenced by

the dynamics of H1 � H ′
1, that is, the dynamical Eq. (114) holds.
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ii. The minimal conservative extension (H,�) of the open system admits an
s-invariant splitting H = H′ ⊕ H′′ such that H ′

1 = H1 ∩ H′, that is, the
blockdiagonal form (117) for � holds.

Notice that part (i i) implies that a1(t) is diagonal with respect to the de-
composition H1 = H ′

1 ⊕ H ′
2 so that both (114) and (115) hold. Therefore, by the

theorem, (114) (or (115)) is equivalent to (114, 115).
Theorem 18 involves the relation between s-invariant decompositions of

conservative systems and the singular values of the coupling operator. We begin
with a treatment of an arbitrary countable orthogonal decomposition of H1 and
H2 that is invariant under the internal actions given by �1 and �2 but does not
necessarily correspond to an s-invariant decomposition:

Hi =
ni⊕

α=1

Hiα, IHi =
ni∑

α=1

πiα, i = 1, 2, (118)

where πiα, i = 1, 2, are the orthogonal projections onto the the subspaces Hiα and
the ni are allowed to be ∞.

The frequency and coupling operators split as follows:

�i =
ni∑

α=1

�iα, (119)

� = IH1�IH2 =
n1∑

α=1

n2∑
β=1

�αβ, �αβ = π1α�π2β. (120)

Given �αβ = π1α�π2β , we have also �
†
αβ = π2β�†π1α . In block-matrix form, with

n1 = 2 and n2 = 3,� has the form

� =
[

�1 �

�† �2

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�11 0 �11 �12 �13

0 �12 �21 �22 �23

�
†
11 �

†
21 �21 0 0

�
†
12 �

†
22 0 �22 0

�
†
13 �

†
23 0 0 �23

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (121)

We refine our decomposition of � through its singular-value decomposition, aided
by the Hilbert-space isomorphism between the range of � in H1 and the range of
�† in H2, described in Sec. 2 (p. 11):

U : Ran � → Ran �†. (122)

For the sake of technical simplicity we restrict discussion in this work to the
situation in which the spectrum of �R�

†
R consists only of eigenvalues and their
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accumulation points, and state the result, Theorem 18, for this case. Its proof as well
as a partial generalization of it is given in Sec. 6 (Theorem 22). The eigenspaces
of �R�

†
R and �

†
R�R for the same eigenvalue are identified isometrically through

U . Let r = rank � = rank �†, which is allowed to be ∞, and let {gq}r
q=1 be an

orthonormal basis for Ran � consisting of eigenvectors of �R�
†
R with eigenvalues

γq > 0, and put g′
q = Ugq . Each of the vectors gq and g′

q is an eigenvector (or

generalized eigenvector if � is unbounded) of respectively �R�
†
R and �

†
R�R .

With the help of the Dirac notation, in which |gq〉 indicates the vector gq and
〈gq | the linear functional of projection onto gq , we can write ��† and its adjoint
as a sum of rank-one operators:

��† =
r∑

q=1

γq |gq〉〈gq |, �†� =
r∑

q=1

γq |g′
q〉〈g′

q |. (123)

(If |gq〉 is a genuine eigenvector of �R�
†
R as we assumed, then |gq〉 ∈ H1; if it is

generalized, then |gq〉 ∈ [H1]−, where [H1]+ ⊂ H1 ⊂ [H1]− is a proper furnishing
of H1). If all γq are different, then the representations (123) are unique. If some of
the γq coincide, then they are not, and we may choose orthonormal eigenvectors
arbitrarily from the eigenspace. With this structure, �R can be written as a sum of
linearly independent rank-one operators:

�R =
r∑

q=1

�q , �q = √
γq |gq〉〈g′

q |, γq > 0, (124)

〈gp||gq〉 = 〈g′
p||g′

q〉 = δpq . (125)

For each q = 1, . . . , r , decompose |gq〉 and |g′
q〉 with respect to the Hilbert space

decompositions (118):

|gq〉 =
n1∑

α=1

|gα
q 〉, |g′

q〉 =
n2∑

α=1

|g′α
q 〉. (126)

It follows that

�q = √
γq

n1∑
α=1

n2∑
β=1

|gα
q 〉〈g′β

q |, (127)

so that � is decomposed as

� =
n1∑

α=1

n2∑
β=1

�αβ, �αβ =
r∑

q=1

√
γq |gα

q 〉〈g′β
q |. (128)

This decomposition shows explicitly the coupling between the components of
H1 and the components of H2 in terms of the spectral structure of the coupling
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operator. H1α is directly coupled with H2β if and only if �αβ = 0. We note, however,
that, for a fixed pair (α, β), the rank-one operators |gα

q 〉〈g′β
q |, for q = 1, . . . , r , are

not in general independent, so that �αβ may be zero even if, for some q, gα
q and

g′β
q are both nonzero; in fact, the cardinality of {q : gα

q 〉〈g′β
q | �= 0} may exceed the

rank of �αβ .
We organize the coupling information by introducing the n1 × n2 coupling

matrix M� with entries

[M�]αβ = rank �αβ. (129)

The αβ-component of the coupling matrix can be thought of as the number of
coupling channels between the components H1α and H2β . Rows of M� containing
all zeros indicate components of H1 that split from the rest of the system H1 ⊕ H2,
and columns of all zeros indicate components of H2 that split from the rest of the
system. If the subspaces Hiα can be reordered in such a way that M� attains
a diagonal block form (with not necessarily square blocks), then we see that
the system splits into completely decoupled subsystems, each with a nontrivial
component in each of H1 and H2 made up of components Hiα(i = 1, 2). This
leads to an s-invariant decomposition. In this case, it is possible to choose the
gq differently if necessary so that, for αβ off of the diagonal blocks, we have
|gα

q 〉〈g′β
q | = 0 for all q, as we will see.

We now examine s-invariant decompositions in more detail, that is, how
H = H1 ⊕ H2 can be decomposed into independently evolving components of
the form H1α ⊕ H2α:

H =
n⊕

α=1

(H1α ⊕ H2α), (130)

where H1α ⊕ H2α is invariant under � for each α. This means that Hiα is invariant
under �i for i = 1, 2 and α = 1, . . . , n and that the coupling operators �αβ are
equal to zero for α �= β. In other words, this decomposition simultaneously block-
diagonalizes �1,�2, and �. For n = 2, for example, � has the form

� =

⎡
⎢⎢⎢⎢⎣

�11 0 �11 0

0 �12 0 �22

�
†
11 0 �21 0

0 �
†
22 0 �22

⎤
⎥⎥⎥⎥⎦ (131)

and ��† has the block-diagonal form

��† =
[

�11�
†
11 0

0 �22�
†
22

]
, (132)



Open Systems Viewed Through Their Conservative Extensions 399

from which we see that any eigenvector of ��† is decomposed with respect to

H1 =
n⊕

α=1
H1α into a sum of eigenvectors (possibly zero) of ��† with the same

eigenvalue.
Thus each eigenspace of ��† admits an orthogonal decomposition into its inter-
sections with all of the H1α . This is what allows us to choose the basis {gq} so that
each is contained in one of the H1α . It follows that g′

q is in H2α .
We then ask, given any choice of basis {gq}, what is the finest decomposition of

the form (130) such that each gq is contained in one of the H1α? The answer requires
considering the orbits of the vectors gq under �1 and the orbits of the vectors g′

q
under �2. We see that if gq ∈ H1α for some q and α, it is required by the invariance
of Hiα under �i , for i = 1, 2, thatO�1 ({gq}) ∈ H1α andO�2 ({g′

q}) ∈ H2α . Further,
the orbit O�1 ({gq}) must be orthogonal to every gp that is not in H1α and the orbit
O�2 ({g′

q}) must be orthogonal to every g′
p that is not in H2α .

Theorem 18. (canonical decomposition) Assume that the spectrum of ��† con-
sists of a countable set of eigenvalues (and their accumulation points).

i. Let an s-invariant splitting of (H,�) be given:

H =
n⊕

α=1

(H1α ⊕ H2α). (133)

Then there exists an orthonormal Hilbert-space basis {gq}r
q=1 for Ran �

of eigenvectors of ��† and corresponding basis {g′
q = Ugq} for Ran �†

such that for each q, there exists α such that gq ∈ H1α and g′
q ∈ H2α .

ii. Given an arbitrary choice of basis {gq}r
q=1 for Ran � consisting of eigen-

vectors of ��†, it follows that the finest s-invariant splitting (of the form
(133)) such that each gq is in some H1α is obtained from the orbits

H1α = O�1 ({gq : q ∈ Vα}) and H2α = O�2 ({g′
q : q ∈ Vα}), (134)

in which the Vα are the minimal (disjoint) subsets of {1, . . . , r} such that
O�1 ({gq : q ∈ Vα}) ⊥ gp and O�2 ({g′

q : q ∈ Vα}) ⊥ g′
p for all p �∈ Vα .

In part (i i) it is tacitly implied that such minimal subsets are well defined.

6. PROOFS OF THEOREMS

In this section we formulate detailed statements on the stucture of open
systems and provide their proofs, which encompass the proofs of the theorems
from Secs. 4 and 5. The development follows that of those sections.



400 Figotin and Shipman

We use the same notation as in the previous sections. We are given a conser-
vative system (H,�):

∂iV = −i �V + F , (135)

and an orthogonal splitting of the Hilbert space

H = H1 ⊕ H2, (136)

with respect to which � has the form

� =
[

�1 �

�† �2

]
, (137)

and we let P1 denote projection onto H1 and define, as before,

◦
� =

[
�1 0

0 �2

]
,

◦
� =

[
0 �

�† 0

]
, � = ◦

� + ◦
�, (138)

As Ran � and Ran �† are isomorphic through the isomorphism U (31), we may
let H0 be a standard Hilbert space on which the operator �R is represented by a
self-adjoint operator �0. This means that there are unitary operators

U1 : H0 → Ran � ⊆ H1, U2 : H0 → Ran �† ⊆ H2 (139)

with

U = U2U−1
1 : Ran � → Ran �† (140)

such that

�0 = U−1
2 �†U1 = U−1

1 �U2. (141)

Since Null �† ⊥ Ran �,�† is completely determined by its action on Ran �, and
the positive operator �R�

†
R restricted to Ran � is represented by �2

0 on H0 through

the isometric isomorphism given by U1; the analogous structure holds for �
†
R�R :

�R�
†
R = U1�

2
0U−1

1 , �
†
R�R = U2�

2
0U−1

2 . (142)

6.1. Reconstructibility from Open Subsystems

The following statement is a detailed version of Theorem 9.

Theorem 19. (system reconstructiblity) There exists a unique minimal sub-
Hilbert-space H′ of H with the following properties:

a. H′ is �-invariant (O�(H′) = H′) and, hence, (H′,� H′) is conservative;
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b. H′ is P1-invariant, that is, H′ = H1c ⊕ H2c, where H1c ⊆ H1 and H2c ⊆
H2;

c. Ran � ⊆ H′.

Let �ic = �i Hic for i = 1, 2, �c = � H2c, a1(t) = �e−i�2t�†, and a2(t) =
�†e−i�1t�. The the following hold

i. H1c = O(Ran �) and H2c = O�2 (Ran �†).
ii. (H′ = H1c ⊕ H2c,� H′) is reconstructible,

H1 ⊕ H2c is the unique minimal conservative extension of (H1,�1a1(t))
contained in H, and H1c ⊕ H2 is the unique minimal conservative exten-
sion of (H2,�2, a2(t)) contained in H.

iii. a1(t) H1c = �ce−i�2ct�
†
c and a1(t) (H1 � H1c) = 0,

a2(t) H2c = �
†
c e−i�2ct�c and a2(t) (H2 � H2c) = 0.

Thus the system H1c ⊕ H2c completely determines the friction func-
tions a1(t) and a2(t). Neither a1(t) nor a2(t) is determined by any
proper �- invariant subsystem of H1c ⊕ H2c of the form H̃1 ⊕ H̃2, where
H̃i ⊂ Hi , i = 1, 2.

iv. (H1 ⊕ H2,�) is reconstructible if and only if H1 and H2 have no nontrivial
�-invariant subspaces.

Proof: There exists a sub-Hilbert-space H′ of H possessing properties (a–c)
because H is such a subspace. Let H′ be an arbitrary such space. First, we show
that Ran �† ⊂ H′. We have

Ran �† = �†(H1) = �†(Ran �) (143)

since Null �† = H1 � Ran �. Let w ∈ �†(Ran �), say w = �†(u) for some u ∈
Ran(�) ⊂ H′ ∩ H1. Let ε > 0 be given. Since �1 is densely defined in H1 ∩ H′,
there exists v ∈ Dom �1 ∩ H′ such that ‖u − v‖ < ε/‖�†‖ and hence ‖w −
�†(v)‖ = ‖�†(u − v)‖ < ε. By (a, b), we obtain

�†(v) = (I − P1)(�1(v) + �†(v)) = (I − P1)�(v) ∈ H′. (144)

Since ε is arbitrary, we conclude that w ∈ H′. We now know that

O�(Ran
◦
�) ⊆ H′. (145)

But, using the definition (22) of the orbit under the action of two operators, we see
that O�(Ran �◦) is itself P1-invariant as follows:

O�(Ran
◦
�) = O

�,
◦
�

(Ran
◦
�) = O ◦

�,
◦
�

(Ran
◦
�) = O ◦

�
(Ran

◦
�) (146)

= O ◦
�

(Ran � ⊕ Ran �†) = O�1 (Ran �) ⊕ O�2 (Ran �†). (147)



402 Figotin and Shipman

Defining H1c and H2c as in (i), we see that H1c ⊕ H2c both satisfies properties
(a–c) and is contained in our arbitrarily chosen H′ with these properties. This
proves the uniqueness of a minimal subspace satisfying (a–c), namely, H′ =
O�(Ran

◦
�) = H1c ⊕ H2c, as well as property (i).

To prove that (H′,� H′) is reconstructible (part (ii)), we must show that
H′ = O�(H1c), which is the state space of the minimal conservative extension for
H1c in H, and that H′ = O�(H2c). Observe that Ran � ∈ H′ and choose again w

and v as before. We have �1(v) ∈ H1c, so that

�†(v) = �(v) − �1(v) ∈ O�(H1c), (148)

and ‖�†(v) − w‖ < ε. We conclude that

Ran
◦
� ⊆ O�(H1c). (149)

But since H′ = O�(Ran �◦) and H1c ⊆ H′, we obtain

O�(H1c) = H′. (150)

An analogous argument applies to H2c.
To prove the rest of part (ii), define H1d = H1 � H1c and H2d = H2 � H2c.

Since H1d ⊕ H2d = H � H′, H1d ⊕ H2d is �-invariant. Since H1d is perpendic-
ular to Ran �, for v ∈ H1d ∩ Ran �,�(v) = �1(v) + �†(v) = �1(v) ∈ H1d , and
we see that H1d itself is �-invariant. Therefore, so is H1 ⊕ H2c, and we obtain

O�(H1) = O�(H1d ) ⊕ O�(H1c) = H1 ⊕ H2c (151)

That O�(H2) = H2 ⊕ H1d is shown similarly.
To prove part (iii), let v ∈ H1c be given. Then

a1(t)v = �e−i�2t�†v = �e−i�2t�†
c v (because v ∈ H1c)

= �e−i�2et�†
c v (because �†

c v ∈ Ran �† ⊂ H2c)

= �ce−i�2et�†
c v (because e−i�2ct�†

c v ∈ H2c).

Let v ∈ H1 � H1c be given. Then v ⊥ Ran �, so that v ∈ Ker�†. The analogous
statement about a2(t) is proven similarly. Finally, if H̃1 ⊕ H̃2 is a proper subspace
of H′ = H1c ⊕ H2c that is invariant under � and P1, then Ran � �⊂ H̃1. This is
because H′ is the minimal such space that contains Ran �. Since a1(0) = ��†,
we have Ran a1(0) = Ran � �⊂ H̃1. This means that the restriction of the system
(H′,� H′) to H̃1 ⊕ H̃2 does not determine a1(0), and therefore does not determine
the function a1(t).

To prove part (iv), first observe that, if H1 ⊕ H2 is not reconstructible,
then H1d , which is �-invariant, is nontrivial. Conversely, suppose that H1 has
an �-invariant subspace H ′

1 ⊂ H1. Set H ′′
1 = H1 � H ′

1, and let H ′′
1 ⊕ H ′′

2 =
O�(H ′′

1 ). Then the minimal conservative extension of (H1,�1, a1(t)) isO�(H1) =
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H ′
1 ⊕ H ′′

1 ⊕ H ′′
2 , so that H ′′

2 = H2c. For all v ∈ H2c ∩ Dom (�),�(v) = �(v) +
�2(v) ∈ H ′′

1 ⊕ H2c. Thus �(v) ⊥ H ′
1, so that Ran � ⊥ H ′′

1 and hence Ran � ⊂
H ′′

1 . Since H ′′
1 ⊕ H2c = O�(H ′′

1 ⊕ H2c) ⊂ O�(Ran �◦) = H1c ⊕ H2c, we obtain
H ′

1 ⊥ H1c so that H1 ⊕ H2 is not reconstructible. �

Remark 20. Of all �-invariant subsystems of the form H̃1 ⊕ H̃2 with H̃i ⊂
Hi , i = 1, 2, H1c ⊕ H2c is the minimal reconstructible one that has the property
that Ran � ⊂ H1c. There may exist �-invariant subsystems of the same form
such that Ran � �⊂ H1c (this is dealt with in Theorem 18) and �-invariant subsys-
tems that are not of this form, which do not concern us.

Theorems 13, 14, and 15 are rather straightforward applications of standard
spectral theory of self-adjoint operators in separable Hilbert space. We shall set
down the general framework and prove those results. The relevant material can be
found, for example, in Akhiezer and Glazman (Ref. 1) or (Ref. 9).

Let d Eλ be the spectral resolution of the identity for a self-adoint operator �

in the Hilbert space H. This means that d Eλ is an (orthogonal) projection-valued
Borel measure on R such that, for each v ∈ H, the vector-valued function of µ

given by ∫
(−∞,µ]

d(Eλv) (152)

is right-continuous, ∫
R

d(Eλv) = lim
µ→∞

∫
(−∞,µ]

d(Eλv) = v, (153)

and, for each f ∈ Cc(R),

f (�)v =
∫

R

f (λ)d(Eλv); (154)

integration is understood in the Lebesgue–Stieltjes sense.
The orbit of a subset S ⊂ H generated by the action of � can be expressed

in terms of continuous functions of � or in terms of spectral projections:

O�(S) = closure of span { f (�)v : v ∈ S, f ∈ Cc(R)} (155)

= closure of span

{∫
B

d(Eλv) : v ∈ S, B a Borel set

}
(156)

= closure of span

{∫
�

d(Eλv) : v ∈ S, � an interval in R with |�| < d

}
, (157)

in which ε is an arbitrary positive real number.
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Proof of Theorems 13, 14, and 15. Parts (ii) of Theorems 13 and 14 are statements

of the representation (157) of the �-orbits of H1 and Ran
◦
� and the �2-orbit of

Ran �†. We have already shown (see Eq. 101) that Hmin is generated through the

action of � on the range of
◦
�.

To prove parts (i) of these theorems, observe that, in the case of pure point
spectrum,

d Eλ =
N∑

j=1

E jδ(λ j − λ), (158)

in which δ is the unit measure concentrated at λ = 0, the λ j are the distinct
eigenvalues of �, the E j are orthogonal projections, and N may be equal to ∞.
Consider the representation (156): for any vector v ∈ S and Borel set B,∫

B
d(Eλv) =

∑
j :λ j ∈B

E jv. (159)

In particular, E jv ∈ O� (by taking B = {λ j }) for j = 1, . . . , N , and each vector∫
B d(Eλv) is in the closure of the linear span of the E jv. It follows that

O�(S) = closure of span {E jv : j ∈ {1, . . . , N }, v ∈ S} =
N⊕

i=1

E j (S). (160)

The statements (i) of the theorems follow from applying this result to the respective
operator � and set S.

To prove parts (i i i) of the theorems, observe that, since H = ⊕N
i=1 Ran(E j ),

O�(S)⊥ =
N⊕

i=1

(Ran (E j ) � E j (S)). (161)

Suppose that S is a subspace of H, and let P denote the projection onto S. Then,
for any eigenvector, say φ ∈ Ran (E j ), we have a splitting φ = φ1 + φ2, where
φ1 ∈ E j (S) ⊆ O�(S) and φ2 ∈ Ran(E j ) � E j (S) ⊆ O�(S)⊥. Thus, P(φ1) = 0
and φ2 = E j (v) for some v ∈ S. From

‖φ2‖2 = ‖E j (v)‖2 = 〈v|E j (v)〉 = 〈v|φ2〉, (162)

we infer that φ2 = 0 if and only if φ2 ⊥ S, that is, if and only if P(φ2) = 0. But
we also see that φ2 = 0 if and only if φ ⊥ E j (S), which is true if and only if
φ ∈ O�(S)⊥. It follows that

O�(S)⊥ = {0} if and only if P(φ) �= 0 for each (nonzero) eigenvector of �.

(163)

This result applies directly to the first part of (i i i) of Theorem 13 because
Hmin = O�(H1). For the second part and part (i i i) of Theorem 14, (163) applies
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after observing that (1)Hmin = H1 ⊕ H2c = H1c ⊕ H2c = O�(Ran
◦
�) if and only

if H1c = H1 and (2) P denotes projection onto Ran
◦
�, then for each v ∈ H, P(v) =

0 if and only if �(v) = 0—this is because
◦
� is self-adjoint so that the nullspace of

◦
� is equal to (Ran �)⊥.

Theorem 15 follows from the fact that, if S is a subspace of H, then the
multiplicity of � restricted to O�(S) is bounded by the dimension of S. �

6.2. Decomposition of Coupled Systems

The next statement on the equivalence between decoupling of an open system
and s- invariant decompositions of its minimal conservative extension is a detailed
version of Theorem 17.

Theorem 21. (decoupling and s-invariant decomposition) Let an open linear
system (H1,�1, a1(t)) be given, and let (H,�) be its minimal conservative exten-
sion, with P1, H2 = H � H1,�2, and � : H2 → H1 defined as before.

i. Let H = H′ ⊕ H′′ be an s-invariant decomposition, with H1 = H ′
1 ⊕ H ′′

1 ,
where H ′

1 = P1(H′). Then the open system (H1,�1, a1(t)) is decou-
pled, that is, if π ′

1 and π ′′
1 are projections in H1 onto H ′

1 and H ′′
1 ,

then and π ′
1a1(t)π ′′

1 = 0 and π ′′
1 a1(t)π ′

1 = 0. Equivalently, putting v′
1(t) =

π ′
1v(t), a′

1(t) = π ′
1a1(t)π ′

1 and f ′
1(t) = π ′

1 f (t), the dynamics of the open
system (H1,�1, a1(t)) are decoupled into

∂tv
′
1(t) = −i�1v

′
1(t) −

∫ ∞

0
a′

1(τ )v′
1(t − τ ) dτ + f ′

1(t) (164)

and

∂tv
′′
1 (t) = −i�1v

′′
1 (t) −

∫ ∞

0
a′′

1 (τ )v′′
1 (t − τ ) dτ + f ′′

1 (t). (165)

ii. Let H1 = H ′
1 ⊕ H ′′

1 be an �-invariant decomposition with corresponding
projections π ′

1 and π ′′
1 , and suppose that π ′

1a1(t)π ′′
1 = 0, that is, that (164)

holds (the evolution of H ′
1 is not influenced by H ′′

1 ). Then there exists an s-
invariant decomposition H = H′ ⊕ H′′, with projection π ′ onto H′, such
that H ′

1 = Ran π ′ P1. In addition, (H′,� H′) is the minimal conservative
extension of (H ′

1,�1 H ′
1, π

′
1a(t)π ′

1).

Proof: The proof of the first part is straightforward. To prove the second state-
ment, let

a′
1(t) = π ′

1a1(t)π ′
1, a′′

1 (t) = π ′′
1 a1(t)π ′′

1 , ã′′
1 (t) = π ′′

1 a1(t)π ′
1, (166)
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so that, in block-matrix form with respect to the decomposition H1 = H ′
1 ⊕

H ′′
1 , a1(t) has the representation

a1(t) =
[

a′
1(t) 0

ã′′
1 (t) a′′

1 (t)

]
. (167)

Since a1(0) = ��† is self-adjoint, we have

ã′′
1 (0) = π ′′

1 a1(0)π ′
1 = (π ′

1a1(0)π ′′
1 )† = 0, (168)

or, in matrix form,

��† = a1(0) =
[

a′
1(0) 0

0 a′′
1 (0)

]
. (169)

This form gives rise to a splitting of Ran � that is invariant under �R�
†
R :

Ran � = Ran a′
1(0) ⊕ Ran a′′

1 (0) = π ′
1Ran � ⊕ π ′′

1 Ran � = U1(H ′
0) ⊕ U1(H ′′

0 ),
(170)

in which

H0 = H ′
0 ⊕ H ′′

0 = U−1
1 Ran a′

1(0) ⊕ U−1
1 Ran a′′

1 (0) (171)

is the induced �0-invariant splitting of the standard Hilbert space H0 for � (by
virtue of �R�

†
R = U1�

2
0U−1

1 ). This gives a �
†
R�R-invariant splitting of Ran �†:

Ran �† = U2(H ′
0) ⊕ U2(H ′′

0 ) = �†(H ′
1) ⊕ �†(H ′′

1 ). (172)

and ultimately a splitting of the action of � on Ran �† and the action of �† on
Ran �:

�R : U2(H ′
0) → U1(H ′

0), �R : U2(H ′′
0 ) → U1(H ′′

0 ); (173)

�
†
R : U1(H ′

0) → U2(H ′
0), �

†
R : U1(H ′′

0 ) → U2(H ′′
2 ).

We now prove that H2 is decomposed into the �2-orbits of U2(H ′
0) and

U2(H ′′
0 ). First, Ran (�†π ′′

1 ) = U2(H ′′
0 ), and since π ′

1�e−i�2t�†π ′′
1 = 0 for all t ,

we have π ′
1�(O�2 (U2(H ′′

0 ))) = {0}. It follows that O�2 (U2(H ′′
0 )) is orthogonal to

U2(H ′
0). Setting

H ′
2 = O�2 (U2(H ′

0)) and H ′′
2 = O�2 (U2(H ′′

0 )), (174)

we have H ′
2 ⊥ H ′′

2 and

Ran �† ⊂ H ′
2 ⊕ H ′′

2 ⊂ H2. (175)

As H ′
2 ⊕ H ′′

2 is an �2-invariant subspace of H2 and (H = H1 ⊕ H2,�) is minimal
as a conservative extension of (H1,�1, a1(t)), we obtain

H2 = H ′
2 ⊕ H ′′

2 . (176)
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By part (i) of Theorem 19, (H′,� H′) is minimal as a conservative extension of
(H ′

1,�1 H ′
1, a′

1(t)). �

The following statement describes a relation between the coupling operator �

and s -invariant decompositions, for � with pure point spectrum as in Theorem 18.

Theorem 22. (coupling operator and s-invariant decomposition) Suppose that
�0 has pure point spectrum.

i. Let

H1 =
n⊕

α=1

H1α and H2 =
n⊕

α=1

H2α (177)

be orthogonal decompositions such that H1α ⊕ H2α is invariant under �

for each α, that is, the system (H,�) splits as

H =
n⊕

α=1

(H1α ⊕ H2α). (178)

Then there exists a decomposition of �0 into rank-one operators

�0 =
r∑

q=1

√
γq |g0q〉 〈g0q |, 〈g0p||g0q〉 = 〈g0p||g0q〉 = δpq , (179)

giving rise to a decomposition of � into rank-one operators:

� =
r∑

q=1

√
γq |gq〉〈g′

q |, 〈gp||gq〉 = 〈g′
p||g′

q〉 = δpq , (180)

such that, for q = 1, . . . , r , there exists α such that gq ∈ H1α and g′
q ∈

H2α .
ii. Conversely, assume that H is reconstructible, and let a decomposition

(180) of � be given arbitrarily. Let G be the graph with vertex set
{1, . . . , r} having an edge between p and q if and only if one of the
following holds:

O�1 (gp) gq , O�2 (g′
p) g′

q . (181)

Let V1, . . . Vn be the vertex sets of the connected components of G, and
put

H1α = O�1 ({gq : q ∈ Vα}), H2α = O�2 ({g′
q : q ∈ Vα}). (182)

(a) H1 = ⊕n
α=1 H1α and H2 = ⊕n

α=1 H2α are orthogonal decompo-
sitions, and H1α ⊕ H2α is invariant under � for each α.
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(b) H = ⊕n
α=1(H1α

⊕
H2α) is the finest s-invariant decomposition

with the property that each gq is in one of the H1α . This means

that, if H = ⊕m
β=1(Hβ

1

⊕
Hβ

2 ) is another such decomposition,

then, for all α = 1, . . . , n, there is β such that Hα ⊂ Hβ

i , for
i = 1, 2.

iii. If all of the eigenspaces of ��† are of dimension 1, then there exists a
unique finest s-invariant decomposition of (H,�) (see form (178)). This

means that, if H =
m⊕

β=1
(Hβ

1 ⊕ Hβ

2 ) is any other s-invariant decomposition

of (H,�), then for all α = 1, . . . , n, there exists β such that Hiα ∈ Hβ

i .

Observe that the conditions (181) are equivalent to

O�1 (gp) ⊥O�1 (gq ), O�2 (g′
p) ⊥O�2 (g′

q ). (183)

Proof:

i. From the �-invariance of H1α ⊕ H2α for each α = 1, . . . , n, we infer that
�†(H1α) ⊂ H2α and �(H2α) ⊂ H1α for each α. Define

�α := � H2α : H2α → H1α. (184)

It is straightforward to verify that

�†
α = (�α)† = �† H1α : H1α → H2α, (185)

and we obtain a decomposition of �:

� =
n∑

α=1

�απ2α, (186)

where π2α is the orthogonal projection to H2α . For each α, �α admits a
decomposition into rank-one operators

�α =
rα∑

q=1

√
γq |gαq〉〈g′

αq |, 〈gαp||gαq〉 = 〈g′
αp||g′

αq〉 = δpq , (187)

where γαq > 0 are the eigenvalues of �α�†
α with corresponding orthonor-

mal eigenvector basis {gαq}rα

q=1 for H1α and {g′
αq}rα

q=1 for H2α . Let {γq}r
q=1

be an arrangement of {γαq : q = 1, . . . , rα, α = 1, . . . , n} and {gq}r
q=1

and {g′
q}r

q=1 the corresponding arrangements of the eigenvectors {gαq}
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and {g′
αq}. We obtain the required form

� =
n∑

α=1

�απ2α =
r∑

q=1

√
γq |gq〉〈g′

q |. (188)

ii. (a) Assume that n > 1, and let α and β be given with 1 ≤ α, β ≤ n
and α �= β. Let p ∈ Vα and q ∈ Vβ be given. Since there is no
edge in G between p and q, we see that O�1 (gp) ⊥ gq . H1α is the
smallest �1-invariant subspace of H1 containing {gp : p ∈ Vα},
and is therefore equal to

H1α =
∑

{O�1 (gp) : p ∈ Vα}. (189)

We infer that gq ∈ H1 � H1α for all q ∈ Vβ . By the self-adjointness
of �1, H1 � H1α is �1-invariant, so that H1β = O�1 ({gq : q ∈
Vβ}) ⊂ H1 � H1α , and we conclude that H1α ⊥ H1β . Now,
O�1 (Ran �) = O�1 ({gq}r

q=1) =⊕n
α=1 H1α , and since (H,�) is re-

constructible, H1 = H1c = O�1 (Ran�) by Theorem 9. There-
fore H1 = ⊕n

α=1 H1α . The analogous argument proves that H2 =⊕n
α=1 H2α . We now prove the invariance of H1α ⊕ H2α under

�. Hiα is by construction invariant under �i . Let v ∈ H1α .
Then v = u + w for some u ∈ span {gq : q ∈ Vα} and w ∈ H1α�
span {gq : q ∈ Vα}. Since w⊥H1 � H1α , we see that w⊥ span
{gq : q /∈ Vα}, so that w⊥ Ran� and therefore w ∈ Ker�†. We
now obtain �†(v) = �†(u) ∈ span {g′

q : q ∈ Vα} ⊂ H2α . The in-
variance of H1α ⊕ H2α under � now follows.

(b) Let H = ⊕m
β=1(Hβ

1 ⊕ Hβ

2 ) be a �-invariant decomposition of H
such that each gq is in one of the Hβ

1 . Fix α, and let p, q ∈ Vα ,
so that gp, gq ∈ H1α and g′

q , g′
p ∈ H2α . Since G contains an edge

between p and q, one of the conditions (181) is satisfied. As-
sume that it is that ��1 (gp) gq (the other case is handled anal-
ogously). Let β be such that gp ∈ Hβ

1 ; it follows that g′
p ∈ Hβ

2 .

SinceO�1 (gp) ⊂ Hβ

1 and Hβ

1 ⊥ Hβ ′
1 for β �= β ′, we have gq ∈ Hβ

1 .
We conclude that gq ∈ Hβ

1 and g′
q ∈ Hβ

2 for all q ∈ Vα , so that

H1α ⊂ Hβ

1 and H2α ⊂ Hβ

2 .
iii. Suppose the spectrum of �0 is simple. Then the representations (179) and

(179) are unique, so that by part (i), each decomposition
⊕m

β=1(Hβ

1 ⊕ Hβ

2 )

has the property that each gq is in some Hβ

1 . The construction of the Hiα

from part (2) has the property that for each α, there exists a β such that
Hiα ⊂ Hβ

i for i = 1, 2.
�
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Remark 23. If we do not assume in part (2) that H is reconstructible, then the
result can be applied to the minimal reconstructible subsystem H1c ⊕ H2c of H.
The decoupled components Hid can be decomposed into �i -invariant subspaces
arbitrarily, and these are automatically �-invariant because they are contained in
Ker �† or Ker �.

The first half of Theorem 22 generalizes to operators with arbitrary spectrum.
We remind the reader of the standard definition of an abstract resolution of the
identitiy:

Definition 24. (resolution of identity) Given a set X and a σ -algebraB of subsets
of X containing the empty set and X, we say that π : B → L(H) is a resolution
of the identity IH if

i. π (A) is an orthogonal projection for all A ∈ B,
ii. π (∅) = 0, π (X ) = IH,

iii. π (X\A) = IH − π (A) for all A ∈ B,
iv. π (A1 ∩ A2) = π (A1)π (A2) for all A1, A2 ∈ B,
v. π (A1 ∪ A2) = π (A1) + π (A2) for all A1, A2 ∈ B with A1 ∩ A2 = ∅,

vi. π

( ∞⋂
i=1

Ai

)
= s

∞
lim
i=1

π (Ai ) for all sequences {Ai }∞i=1 from B with Ai+1 ⊂
Ai .

π is said to commute with an operator T if, for all A ∈ B, π (A)T = T π (A).

These properties are not independent. For example, property (v) is implied
by the first four, but we include it because of its conceptual relevance.

The statement below is partial generalization of Theorem 18 for � with
general spectrum.

Theorem 25. Let π be a resolution of the identity on H that commutes with �

and P1. Then there exists a resolution Eπ of the identity on H0 that commutes with
�0, such that, for all A ∈ B,

Ui Eπ (A) = π (A)Ui , i = 1, 2, (190)

from which it follows that

Ran(Ui Eπ (A)) = Ran (π (A)) ∩ Hi�, i = 1, 2. (191)

The proof of Theorem 25 is based on the following lemma.
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Lemma 26. Let G1 ⊕ G2 be s-invariant, with G1 ⊆ H1 and G2 ⊆ H2. Then
there exists �0 -invariant subspace G0 of H0� such that

UiπG0 = πGi Ui , i = 1, 2. (192)

In fact,

G0 = U−1
1 (Ran � ∩ G1) = U−1

2 (Ran �† ∩ G2). (193)

Proof: From Theorem 19, part (i), we see that G := G1 ⊕ G2 is invariant under
◦
� and therefore also under the self-adjoint operator

◦
�; in other words,

◦
� commutes

with the orthogonal projection πG onto G in H. Therefore,

(Ran
◦
�) ∩ G = ◦

�(G) = πG(Ran
◦
�), (194)

which is seen from the decomposition Ran
◦
� = ◦

�(G) ⊕ ◦
�(H � G). From πG =

πG1 ⊕ πG2 and the definition of
◦
�, we find that (194) admits the decomposition

(Ran �) ∩ G1 ⊕ (Ran �†) ∩ G2 = �(G2) ⊕ �†(G1) = πG1 (Ran �) ⊕ πG2 (Ran �†).
(195)

In addition,
◦
� 2(G) = ◦

�(G), from which we obtain

�(�†(G1)) = �(G2) and �†(�(G2)) = �†(G1). (196)
◦
�(G) is invariant under

◦
� R , and therefore also under the unitary self-adjoint

involution
◦

U on Ran �◦ = Ran � ⊕ Ran �†

◦
U := ( ◦

�
2
R

)−1/2 ◦
� R, (197)

in which we take the square root

( ◦
�

2
R

)1/2
=

[
(�R�

†
R)1/2 0

0 (�†
R�R)1/2

]
. (198)

Using
◦
�(G) = �(G2) ⊕ �†(G1) and that

◦
U =

[
0 U−1

U 0

]
, (199)

we obtain U�(G2) ⊆ �†(G1) and U−1�†(G1) ⊆ �(G2), so that U�(G2) =
�†(G1), and since U = U2U−1

1 , we may define

G0 := U−1
1 �(G2) = U−1

2 �†(G1). (200)

G0 is �0-invariant because

�0(G0) = U−1
1 �U2G0 = U−1

1 ��†(G1) = U−1
1 �(G2) = G0. (201)
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Finally, since U1 takes H0� isomorphically to H1� , we have

U1πG0 = π�(G2)U1, (202)

in which the domain of π�(G2) is H1� , and from (195), we see that πG1 coincides
with π�(G2) on H1� so that

U1πG0 = πG1U1. (203)

U2πG0 = πG2U2 is obtained analogously. �

Proof of Theorem 25. We define a map Eπ : B → L(H0) and show it is a res-
olution of the identity with the desired property. Let A ∈ B be given, and set
G1 = Ran P1π (A) and G2 = Ran P2π (A). We put

Eπ (A) = πG0 , (204)

where G0 is provided by Lemma 26; the property desired in the Theorem is
thus provide by the lemma. Properties (i) and (ii) of a resolution of the identity
are trivially verified for Eπ . To see property (i i i), let G̃0 = Eπ (X\A) and G̃i =
Hi � Gi = Ran Piπ (X\A), and use

πG0 = U−1
i πGi Ui and πG̃0

= U−1
i πG̃i

Ui , (205)

to calculate

Eπ (A) + Eπ (X\A) = πG0 + πG̃0
= U−1

i (πGi + πG̃i
)Ui = U−1

i IHi Ui = IH0 .

(206)
To prove property 4 of Definion 24, let A, B ∈ B, and compute

Eπ (A ∩ B) = U−1
1 π (A ∩ B)U1 = U−1

1 π (A)π (B)U1

= U−1
1 π (A)U1U−1

1 π (B)U1 = Eπ (A)Eπ (B). (207)

For property 5 we compute

slim
n→∞ Eπ (An) = slim

n→∞ U−1
1 π (Ai )U1 = U−1

1 slim
n→∞(π (An)U1) (208)

= U−1
i π

( ∞⋂
n=1

An

)
U1 = Eπ

( ∞⋂
n=1

An

)
.

�
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